We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Potential New Tool for Cervical Cancer Detection

By LabMedica International staff writers
Posted on 29 Dec 2014
Photoacoustic imaging (PAI) has the potential to be a quicker, cheaper, and less-invasive method for detecting and staging cervical cancer (CC), according to a new study. More...


Researchers at Central South University (Changsha, China) conducted 30 in vitro experiments with tissue samples representing different cancer stages, using PAI, a hybrid optical imaging technique that combines the high contrast of pure optical imaging with the high spatial resolution and the deep imaging depth of ultrasound. The technique involves short laser pulses, some of which are absorbed by the tissues and converted into heat, leading to rapid thermal expansion inside the tissues that produces ultrasonic waves. The generated waves are then detected by an ultrasonic sensor to form photoacoustic images of the tissues.

In each of the experiments, the researchers embedded one section of normal cervical tissue and one section of cervical lesion (from the same person) in a cylindrical phantom for simultaneous PAI. Part of each sample was also sent to histological evaluation for cross-PAI. By processing all of the imaging data, the researchers obtained a depth maximum amplitude projection (DMAP) image, which shows the PAI contrast of the sample. The researchers used hemoglobin as the contrast agent, since PAI is highly sensitive to abnormal angiogenesis, a hallmark of CC tumors.

The obtained DMAP images were analyzed to evaluate the extent of the angiogenesis for different clinical stages of CC. The results showed stronger absorption from the cervical lesions, relative to that of normal tissue. The difference in mean optical absorption (MOA) between normal tissue and CC lesions showed a statistical significance, and the MOA of the CC lesions were closely related to the severity of CC. The study was published in the January 2015 issue of Biomedical Optics Express.

“Due to the higher hemoglobin concentration, abnormal angiogenesis has higher optical absorptions in certain wavelengths than normal tissues,” said lead author assistant professor of biomedical engineering Jiaying Xiao, PhD. “The technique is noninvasive and can detect the lesions in the cervical canal, an area conventional methods fail to observe. The photoacoustic imaging can also evaluate the invasion depth of cervical lesions more effectively.”

In current clinical practice, the diagnosis of CC is mainly through the cervical screening followed by a necessary biopsy, but this method is labor consuming and expensive, and can only detect superficial lesions around the external cervical orifice. In contrast, PAI is sensitive to the abnormal angiogenesis deep in the biological tissue, and may be capable for the intact scanning both around the external orifice and in cervical canal.

Related Links:

Central South University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.