Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Genomic Researchers Propose Reclassifying Thyroid Cancers into Molecular Subtypes

By LabMedica International staff writers
Posted on 03 Nov 2014
A recent paper detailed the comprehensive genomic characterization of papillary thyroid carcinoma (PTC), the most common type of thyroid cancer, and suggested reclassifying thyroid cancers into molecular subtypes that better reflect their underlying signaling and differentiation properties.

Investigators associated with The Cancer Genome Atlas Research Network (Bethesda, MD, USA) recently described the genomic landscape of 496 PTCs. More...
The Cancer Genome Atlas began as a three-year pilot in 2006 with an investment of USD 50 million each from the [US] National Cancer Institute (NCI) and [US] National Human Genome Research Institute (NHGRI). The TCGA pilot project confirmed that an atlas of changes could be created for specific cancer types. It also showed that a national network of research and technology teams working on distinct but related projects could pool the results of their efforts, create an economy of scale and develop an infrastructure for making the data publicly accessible. Furthermore, it proved that making the data freely available would enable researchers anywhere around the world to make and validate important discoveries. The success of the pilot led the [US] National Institutes of Health to commit major resources to TCGA to collect and characterize more than 20 additional tumor types. Thyroid cancer comprises one of the largest sample sizes, with nearly 500 tumors studied.

It was intended that each cancer would undergo comprehensive genomic characterization and analysis. The comprehensive data generated by TCGA’s network approach are freely available to the cancer research community through the TCGA Data Portal.

Results of the thyroid cancer study, which were published in the October 13, 2014, issue of the journal Cell, revealed that PTCs demonstrated a low frequency of somatic alterations (relative to other carcinomas) and extended the set of known PTC driver alterations to include the EIF1AX, PPM1D, and CHEK2 genes as well as diverse gene fusions. These discoveries reduced the fraction of PTC cases with unknown oncogenic driver from 25% to 3.5%. 

Combined analyses of genomic variants, gene expression, and methylation demonstrated that different driver groups led to different pathologies with distinct signaling and differentiation characteristics. These results led the authors to propose a reclassification of thyroid cancers into molecular subtypes that would better reflect their underlying signaling and differentiation properties. This new classification strategy would have the potential to improve their pathological classification and better inform the management of the disease.

“These findings are a major step forward in how doctors and patients will address thyroid cancer diagnosis and treatment. Researchers around the world will be using this data, coming back to it and asking other scientific questions,” said Dr. Carolyn Hutter, program director in the division of genomic medicine at the [US] National Human Genome Research Institute (Bethesda, MD, USA). 

Related Links:

The Cancer Genome Atlas Research Network
TCGA Data Portal
National Human Genome Research Institute
 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.