Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Innovative Methodology Translates Noncoding DNA in Colorectal Cancer

By LabMedica International staff writers
Posted on 05 Aug 2014
Although the genetic origins of cancers have been studied for a long time, scientists were not able to measure the role of noncoding regions of the genome until now.

Cancer is a disease of the genome resulting from a combination of genetic modifications or mutations which are inherited from parents with strong or weak predispositions to develop certain kinds of cancer and in addition accumulate new mutations in cells throughout an individual’s lifespan.

Geneticists at the University of Geneva (Switzerland) used genome sequencing technology to compare the ribonucleic acid (RNA) between healthy tissue and tumor tissue from 103 patients. More...
They searched for regulatory elements present in the vast, noncoding portion of the genome that impact the development of colorectal cancer. The goal was to identify the effect, present only in cancerous tissue, of acquired mutations whose activation would have triggered the disease and it is the first study of this scale to examine the noncoding genome of cancer patients. RNA quality was assessed using the Bioanalyzer RNA 6000 Nano Kit (Agilent Technologies; Santa Clara, CA, USA) and RNA quantity was measured with the Qubit 2.0 fluorometer using the RNA Broad range kit (Invitrogen; Carlsbad, CA, USA) and messenger RNA (mRNA) sequencing was done on a HiSeq 2000 platform (Illumina; San Diego, CA, USA).

The team was able to identify two kinds of noncoding mutations that have an impact on the development of colorectal cancer. They found, on one hand, hereditary regulatory variants that are not active in healthy tissue, but are activated in tumors and seem to contribute to cancer progression. It shows that the inherited genome not only affects the predisposition towards developing cancer, but also has an influence on its progression. On the other hand, the scientists identified effects of acquired mutations on the regulation of gene expression that affect the genesis and progression of colorectal tumors.

Halit Ongen, PhD, the lead author of this study, said, “The elements responsible for the development and progression of cancers located in the noncoding genome are as important as those found in the coding regions of the genome. Therefore, analyzing genetic factors in our whole genome, and not only in the coding regions as it was done before, gives us a much more comprehensive knowledge of the genetics behind colorectal cancer.” The study was published on July 23, 2014, in the journal Nature.

Related Links:

University of Geneva
Agilent Technologies
Invitrogen 



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Automated Staining Unit
RAL Stainer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.