We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Roche Diagnostics

Develops, manufactures, and markets a wide range of in vitro diagnostic systems, instruments, reagents, and tests read more Featured Products: More products

Download Mobile App




Genetic Test Predicts Therapeutic Response in Pediatric Kidney Disease

By LabMedica International staff writers
Posted on 05 Aug 2014
Genetic mutations in the kidney’s filtration barrier are frequently linked with a lack of response to immunosuppressive treatments among children with sporadic nephrotic syndrome.

A genetic screening test may help predict which patients with one of the most common childhood kidney diseases will respond to standard therapies and using such a test could help guide clinicians as they counsel and treat patients.

Scientists at the University of Florence (Italy) designed an innovative diagnostic approach that allows for a fast analysis of all genes involved in the disease. More...
The use of this method allowed the team to analyze 46 different genes at the same time in 69 children with the disease, and they found that genetic mutations in the kidney's filtration barrier were frequently linked with a lack of response to immunosuppressive treatments in patients.

DNA was extracted from peripheral blood using a QIAamp DNA Mini Kit (Qiagen; Hilden, Germany) , and the DNA libraries were constructed using Roche NimbleGen (Madison, WI, USA) sample preparation protocol (Rapid Library Preparation Method Manual). A Roche NimbleGen sequence capture array in a solution-based method was used to capture all coding exons and flanking regions of 46 genes. The array included 19 known genes responsible for nephrotic syndrome to potentially identify putative new genes, the other 27 candidate genes associated with proteinuria in animal models and expressed in the glomerular filtration barrier were included.

The innovative strategy allowed the teams to establish the existence of potentially pathogenic variants in 32.3% of 31 patients with sporadic steroid-resistance, whereas using the same technical approach, none of 38 additional patients who exhibited a similar clinical phenotype but were steroid-sensitive had genetic mutations in the analyzed genes. The authors concluded that the results of their study suggest that this type of genetic analysis may improve the approach to children with sporadic nephrotic syndrome by promoting better genetic counseling and management of the treatment.

Paola Romagnani, MD, PhD, the senior author of the study said, “This type of genetic analysis can improve the clinical approach to children with nephrotic syndrome by promoting better genetic counseling for the risk of recurrence of the disease in the family, and a better management of treatment and clinical follow up.” The study was published on July 24, 2014, in the Journal of the American Society of Nephrology.

Related Links:

University of Florence
Qiagen
Roche NimbleGen




Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.