Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Approach Identifies Multiple Melanoma Drug Resistance Biomarkers

By LabMedica International staff writers
Posted on 14 Jul 2014
A recent paper described the use of liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) for assessing melanoma biomarkers in the blood in order to determine the effectiveness of chemotherapy.

Modern chemotherapeutic techniques based on treatment with multiple anticancer drugs require the identification and measurement of new classes of biomarkers in order to determine the efficacy of the treatment. More...
Investigators at the Moffitt Cancer Center (Tampa, FL, USA) recently described the use of LC-MRM for this purpose. They developed and used an LC-MRM platform to study the adaptive signaling responses of melanoma cells to inhibitors of MEK (AZD6244) and HSP90 (XL888).

The mitogen-activated protein–kinase (MEK) pathway comprising the kinases RAF, MEK, and ERK is central to cell proliferation and survival but is deregulated in more than 90% of melanomas. Various MEK inhibitors are currently being evaluated in clinical studies.

XL888 is an orally available small molecule inhibitor of HSP90 (heat shock protein 90), a chaperone protein that promotes the activity and stability of a range of client proteins, including kinases, which play key regulatory roles in cells. The activity of HSP90 is particularly prominent in tumor cells, where it promotes the activity of proteins controlling proliferation and survival. XL888 is a potent and selective ATP-competitive inhibitor of HSP90, and binds to its target in a manner that is structurally distinct from other HSP90 inhibitors currently in use.

Results obtained during the current study showed that XL888 had good anti-tumor activity against NRAS mutant melanoma cell lines as well as BRAF mutant cells with acquired resistance to BRAF inhibitors both in vitro and in vivo. LC-MRM analysis showed HSP90 inhibition to be associated with decreased expression of multiple receptor tyrosine kinases. MEK inhibition was found to be associated with signaling through the NFkappaB and WNT signaling pathways, as well as increased receptor tyrosine kinase expression and activation

Overall, the LC-MRM approach was able to detect more than 80 cancer signaling proteins simultaneously. It was highly sensitive and could be applied to fine needle aspirates from xenografts and clinical melanoma specimens (using only 50 micrograms of total protein).

“While targeted therapy drugs, such as BRAF and MEK inhibitors, have been associated with impressive responses in melanoma patients, most patients will eventually fail therapy,” said senior author Dr. Keiran Smalley, associate member of the cancer biology and evolution program at the Moffitt Cancer Center. “It is likely that long-term management of melanoma patients will require combinations of drugs.”

The LC-MRM study was published in July 2014 issue of the journal Molecular and Cellular Proteomics.

Related Links:

Moffitt Cancer Center 



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.