Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood-Based DNA Test May Replace Heart Biopsy for Detecting Transplant Rejection

By LabMedica International staff writers
Posted on 01 Jul 2014
In a proof-of-principle study, a noninvasive DNA-based blood test was found to be more accurate than the standard heart biopsy procedure for detecting heart transplant rejection.

In a search for alternatives to the heart biopsy procedure, which is uncomfortable and can cause complications such as heart rhythm abnormalities or valve damage, investigators at Stanford University (Palo Alto, CA, USA) developed a cell-free DNA test that detects donor DNA in the blood of the recipient. More...
This assay is based on the release of genetic material into the bloodstream by heart cells attacked and killed by the immune system. Thus, in transplant recipients not experiencing rejection, donor DNA accounts for less than 1% of all cell-free DNA in the recipient's blood. During rejection episodes, however, the percentage of donor DNA increases to about 3%–4%.

In a recent paper the investigators described a proof-of-principle study of the universal, noninvasive diagnostic method based on high-throughput screening of circulating cell-free donor-derived DNA (cfdDNA). The study was carried out on a small retrospective cohort of 565 samples from 65 patients. In the study, circulating cell-free DNA was purified from plasma and sequenced to quantify the fraction of cfdDNA.

Through a comparison with heart biopsy results, the investigators demonstrated that cfdDNA enabled diagnosis of acute rejection after heart transplantation. They were able to accurately detect the two main types of rejection (antibody-mediated rejection and acute cellular rejection) in 24 patients who suffered moderate to severe rejection episodes, one of whom required a second transplant. They were also able to detect signs of rejection up to five months before detection by the biopsy method.

"We have found that this cell-free DNA assay is a very accurate way to diagnose acute rejection, sometimes weeks to months before a biopsy picks up any signs," said senior author Dr. Kiran Khush, assistant professor of medicine at Stanford University. "This earlier detection may prevent irreversible damage to the transplanted organ. This test has the potential to revolutionize the care of our patients. It may also allow us to conduct several diagnostic tests simultaneously. For example, we could also look for microbial sequences in the blood sample to rule out infection or other complications sometimes experienced by transplant recipients. It could allow us to determine whether shortness of breath experienced by a patient is due to an infection or the start of a rejection episode. It could be a one-stop shop for multiple potential problems."

Stanford University has applied for a patent relating to the test described in the study, which was published in the June 18, 2014, online edition of the journal Science Translational Medicine.

Related Links:

Stanford University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.