We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Biomarker Genes Enable Early Detection of Pancreatic Cancer

By LabMedica International staff writers
Posted on 04 Nov 2013
Results of a recent study pinpointed two methylated genes as potential biomarkers for the early detection of pancreatic cancer. More...
Pancreatic cancer is the fourth leading cause of cancer deaths and there currently are no reliable methods for the early detection of this disease.

In an effort to identify potential biomarkers for detection of pancreatic cancer, investigators at Johns Hopkins University (Baltimore, MD, USA) used a genome-wide pharmacologic transcriptome approach to identify novel cancer-specific DNA methylation alterations in pancreatic cancer cell lines. Of eight promising genes, they focused their studies on BNC1 (basonuclin 1) and ADAMTS1 (ADAM metallopeptidase with thrombospondin type 1 motif) for further downstream analysis including methylation and expression.

The protein encoded by the BNC1 gene is a zinc finger protein present in the basal cell layer of the epidermis and in hair follicles. It is also found in abundance in the germ cells of testis and ovary. This protein is thought to play a regulatory role in keratinocyte proliferation, and it may also be a regulator of rRNA transcription. The expression of the ASAMTS1 gene is associated with various inflammatory processes as well as muscle wasting in cancer. This gene is thought to be necessary for normal growth, fertility, and organ morphology and function.

The investigators employed a nanoparticle-enabled MOB (Methylation on Beads) technology to detect early stage pancreatic cancers by analyzing DNA methylation in patient serum. MOB is a new technique that integrates DNA extraction, bisulfite conversion, and PCR in a single tube via the use of silica superparamagnetic beads as a common DNA carrier for facilitating cell debris removal and buffer exchange throughout the entire process. In addition, PCR buffer is used to directly elute bisulfite-treated DNA from the magnetic beads for subsequent target amplifications.

Results yielded the two novel genes, BNC1 and ADAMTS1, which showed a high frequency of methylation in pancreas cancers. Using MOB technology, these alterations could be detected in serum samples taken from 42 pancreas cancer patients, with sensitivity for BNC1 of 79% and for ADAMTS1 of 48%, while specificity was 89% for BNC1 and 92% for ADAMTS1. Overall sensitivity using both markers was 81% and specificity was 85%.

“We have mammograms to screen for breast cancer and colonoscopies for colon cancer but we have had nothing to help us screen for pancreatic cancer,” said senior author Dr. Nita Ahuja, associate professor of surgery, oncology, and urology at Johns Hopkins University. “While far from perfect, we think we have found an early detection marker for pancreatic cancer that may allow us to locate and attack the disease at a much earlier stage than we usually do.”


The study was published in the October 2, 2013, online edition of the journal Clinical Cancer Research.

Related Links:
Johns Hopkins University



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.