We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Microfluidic Chip Captures Live Tumor Cells from Blood

By LabMedica International staff writers
Posted on 28 Aug 2013
A neoteric microfluidic chip has been developed that can quickly and efficiently segregate and capture live circulating tumor cells (CTCs) from a patient's blood.

The chip has potential applications for cancer screenings and treatment assessments as CTCs circulating within a patient's bloodstream can carry cancer from a primary tumor site to distant sites of the body, spreading the disease. More...


A team of scientists at Peking University (Beijing, China) developed the system that captures more than 90% of the CTCs, which makes it highly efficient. Overall processing time has also been shortened, due in part to a step in which red blood cells are selectively lysed, or broken apart. Lysing the red blood cells diminishes the tendency of blood to clog the system, a common problem that slows processing time in similar CTC filtering devices.

The microfluidic system consists of the chip itself, tubing, fluid connectors, syringes, and syringe pumps. Tubes and fluid connectors are used to connect the syringes, and fluidic ports punched into the microfluidic chip. The ability to count live, individual CTCs in the bloodstream can help doctors determine the severity of a cancer, since CTC density in the blood is linked to the progression of the disease and patients' likelihood of survival. The novel method could also improve "liquid biopsy" techniques, in which a small amount of blood is drawn as an alternative to conventional tissue biopsies of primary or metastatic tumors.

Ray P.S. Han, PhD, a professor and lead author, said, “Because our chip is able to capture viable CTCs, it creates opportunities for the development of new and efficient cancer biomarkers. It also gives us a chance of the grandest dream of all: a technology capable of directly removing CTCs from the human bloodstream, a form of CTC dialysis." The study was published online on June 6, 2013, in the journal Biomicrofluidics.

Related Links:
Peking University



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
hCG Whole Blood Pregnancy Test
VEDALAB hCG-CHECK-1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.