We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Genetic Root Identified For Early-Onset Prostate Cancer

By LabMedica International staff writers
Posted on 28 Feb 2013
Early-onset prostate cancer (EOPC) requires early diagnosis and definitive treatment due to the long life expectancy of younger patients and their higher risk of dying from the disease.

Deep sequencing-based genomics analysis has been used to compare the genomic alteration landscapes of EOPC patients with those with the classical elderly-onset prostate cancer. More...


Scientists at the European Molecular Biology Laboratory (EMBL; Heidelberg, Germany) sequenced the entire genetic code of cells in 11 tumors from EOPC patients, comparing it with the code in tumors from seven patients with elderly-onset prostate cancer. They used these genomics data, together with a large-scale tissue microarray (TMA)-based validation platform, to pinpoint molecular features linked with early disease occurrence.

The investigators found that the receptor that binds testosterone, called the androgen receptor, is very active in tumors from young patients, causing a number of genes to rearrange and become cancer promoting. The genomes of elderly prostate cancer patients primarily showed abnormalities that were not caused by the androgen receptor's activity. Data from more than 10,000 additional patients showed that androgen receptor activity and corresponding gene rearrangements were indeed higher in younger patients.

Jan Korbel, PhD, the cosenior author of the study, said, "It's been unclear whether prostate cancer in the young is explainable by a different mechanism than prostate cancer in the elderly. Our study implicates a different cause of disease in young patients. Interestingly, young men have generally higher testosterone levels than elderly men, which raises the question of whether high physiological levels of testosterone in young men may be linked with early-onset prostate cancer, a question that we are keen to address in the future." The authors concluded that their findings demonstrate striking age-dependent differences in the mechanistic landscapes of structural genomic alterations in a common cancer. The study was published on February 11, 2013, in the journal Cancer Cell.

Related Links:

European Molecular Biology Laboratory




Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Blood Glucose Reference Analyzer
Nova Primary
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.