Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Microfluidic Silicon Probe Accurately Stains Tissue Sections

By LabMedica International staff writers
Posted on 24 Jan 2012
A flexible, noncontact microfluidic probe made from silicon can help pathologists to investigate critical tissue samples for disease diagnostics.

The microfluidic probe can accurately stain tissue sections at the micrometer scale. More...
It consists of a silicon microfluidic head having two microchannels. Unlike an inkjet printer cartridge, the head reaspirates the liquid that it injects on a surface. This prevents spreading and accumulation of the liquid on the surface, which can lead to overexposure.

Specifically for tissue section analysis, the probe can deliver an antibody very locally in a selected area of a tissue section with pinpoint accuracy. Since analysis can be done on spots and lines instead of on the entire tissue section, the tissue is better preserved for additional tests, if required. In addition, only a few picoliters of liquid containing antibodies are needed for each analysis spot.

IBM (Zurich, Switzerland) scientists developed the microfluidic probe, which fits to standard workflows in conventional pathology. In addition, it is compatible with current biochemical staining systems and resistant to a broad range of chemicals. The small size of the probe also enables easy viewing of the sample from above and below by the inverted microscope commonly used in clinical laboratories.

"We have developed a proof-of-concept technology, which I hope puts pathology on a modern roadmap—benefiting from the latest developments in silicon-based microfluidics," said Govind Kaigala, a scientist at IBM Research-Zurich. He added, "This new approach will enable pathologists to stain tissue samples with micrometer precision and easily perform multiple tissue stains on limited samples."

IBM scientists will continue to test and improve the microfluidic probe and potentially begin using it in laboratory environments in the next several months. In addition, the team plans to explore specific clinical applications, possibly with partners in the field of pathology. The microfluidic probe promises to support the work of pathologists and become a tool of choice for pharmaceutical research and diagnostics involving biological specimens.

Related Links:

IBM Research, Zurich



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.