Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Powerful Tool Detects Fast-Spreading SARS-COV-2 Variants

By LabMedica International staff writers
Posted on 30 Jan 2025

Throughout the course of the COVID-19 pandemic, new variants of SARS-CoV-2 have emerged, each demonstrating increased transmissibility. More...

Viruses can mutate in ways that enhance their ability to infect hosts, either by increasing viral load or evading immune responses. Rapid detection of these mutations is crucial to understanding viral biology and identifying new variants that may require further investigation. Quickly identifying mutations that contribute to higher transmission rates can aid in outbreak control and help spot potential immune escape variants. However, determining how individual mutations influence viral transmission has proven to be a difficult task. To overcome this challenge, researchers have developed a tool capable of detecting SARS-CoV-2 variants with high transmission potential before they become widespread.

A team of scientists, led by the Peter Doherty Institute for Infection and Immunity (Doherty Institute, Melbourne, Australia) and the University of Pittsburgh (Pittsburgh, PA, USA), analyzed millions of viral genome sequences from around the world. Their work revealed specific mutations that give SARS-CoV-2 a significant advantage in spreading. While many of these mutations were found in the virus’s spike protein, which is responsible for allowing the virus to enter human cells and is targeted by antibodies, the researchers also discovered important mutations in less-studied regions of the virus.

These mutations play a role in enhancing the virus's ability to bind to human cells, evade immune responses, or alter protein structure. Unlike previous methods, this new model, highlighted in Nature Communications, uses genomic surveillance data to accurately identify the mutations driving the spread of certain variants, even when these mutations appear in only a small fraction of cases. While the model was developed specifically for SARS-CoV-2, the researchers believe it can be adapted to track the transmission of other pathogens, such as influenza.

“Our method is like a magnifying glass for viral evolution, helping public health systems spot and monitor highly transmissible variants before they become widespread,” said Associate Professor John Barton from the University of Pittsburgh, co-lead author of the study. “Not only can we track SARS-CoV-2 more effectively, but our method can also be adapted to study the evolution of other pathogens, helping us stay ahead of future outbreaks. It’s a powerful tool for global efforts to tackle emerging diseases.”


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Rapid Flu Test
Influenza A&B Rapid Test Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.