We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Maternal Blood Test Identifies Congenital Heart Diseases in Fetus

By LabMedica International staff writers
Posted on 04 Nov 2024

Each year, around 1,000 children are born with a single ventricle heart defect (SVHD), a condition where one of the heart's lower chambers is underdeveloped, too small, or missing a valve. More...

While survival is possible for children with SVHDs, their quality of life is significantly affected due to having only one functional ventricle. This serious congenital heart defect requires immediate treatment after birth. As the number of fetal therapies increases, the importance of early diagnosis becomes even more pronounced. Early detection of congenital heart diseases during pregnancy would not only provide physicians with additional time to plan treatment but also reduce the financial burden on families. It would enable them to consider earlier therapeutic options that could enhance survival rates and improve outcomes for newborns facing life-threatening heart conditions. Currently, the standard method for diagnosing congenital heart disease prenatally occurs at the five-month mark of pregnancy through ultrasound, at which point the disease is usually advanced enough to be visually identified. This method relies on imaging technology and equipment, leading to increased healthcare costs and heightened risks of healthcare inequity.

Researchers at Nationwide Children's Hospital (Columbus, OH, USA) have now discovered a potential biomarker that could detect the presence of SVHDs in a fetus through a maternal blood test. This test analyzes elevated levels of cell-free microRNAs (miRNAs) in the blood of mothers carrying a fetus with single ventricle heart disease. According to a research letter published in Circulation Research, these cell-free miRNAs could eventually serve as noninvasive biomarkers for earlier prenatal detection of single ventricle heart diseases.

In their study, the researchers utilized deep sequencing to identify elevated cell-free miRNAs in the maternal blood of pregnant participants carrying a fetus diagnosed with SVHD. They also employed induced pluripotent stem cells (iPSCs) to examine the functions of these miRNAs in the proliferation of human cardiomyocytes. The findings suggest that these cell-free miRNAs in maternal blood hold promise as noninvasive biomarkers for the prenatal detection of fetal SVHDs, pending additional animal studies and clinical validation.

“This technology is in an early phase; preclinical studies and additional clinical validation is needed, but we are encouraged by what this could mean for the evolution of detecting and managing single ventricle heart diseases in children,” said Mingtao Zhao, DVM, PhD, senior author of the study and associate professor in the Center for Cardiovascular Research at Nationwide Children’s. “This is a step toward further improved outcomes for newborns with congenital heart diseases.
 


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Influenza Virus Test
NovaLisa Influenza Virus B IgM ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.