Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




First-Of-Its-Kind Technology Maps Out Diverse Protein Interactions in Cells Using DNA Barcodes

By LabMedica International staff writers
Posted on 01 Oct 2024

Proteins play a vital role in almost all life processes, and understanding how these essential molecules interact is crucial in both biology and medicine. More...

Protein interactions drive critical functions in health and disease, and decoding these interactions can enhance predictions of cell behavior and offer significant clinical applications, from improved diagnostics to more effective therapies. However, current methods for studying protein interactions have limitations, such as producing false results and failing to capture the full range of protein interactions. For example, the widely used yeast-two hybrid assays focus on pairwise binary interactions and require genetic manipulation, making them unsuitable for clinical samples. Similarly, mass spectrometry-based proteomics often misses weak interactions due to extensive sample processing and evaluates protein interactions in a binary fashion. These existing methods fall short in detecting complex, higher-order interactions where multiple proteins form large functional assemblies—crucial in aggressive cancers.

Now, a team of researchers from the NUS Institute for Health Innovation & Technology (iHealthtech, Singapore) has developed a novel technology called TETRIS to map out diverse protein interactions in cells using DNA barcodes. This innovative approach allows the identification and quantification of multiple interacting partners in large protein assemblies. By capturing the complex hierarchy of protein interactions within tumor cells, TETRIS uncovers the molecular mechanisms driving disease progression. This leads to more accurate diagnostics, enabling the sub-typing of cancers and identifying aggressive forms of the disease within hours, a capability previously unavailable. Additionally, TETRIS offers insights for personalized treatment strategies by pinpointing specific proteins and their interactions that drive cancer growth, opening the door to targeted therapies that can improve patient outcomes.

TETRIS leverages DNA nanotechnology to map protein interactions directly in patient samples. It uses hybrid molecular structures as smart encoders, each carrying a target-recognizing antibody and a templated DNA barcode. These encoders bind to interacting proteins and fuse their barcodes with neighboring units, capturing both the molecular identity and spatial relationships of the proteins. Unlike traditional methods, TETRIS can measure both pairwise and higher-order protein interactions, providing a comprehensive view of the complex protein interaction network, or interactome. A key feature of TETRIS is its ability to encode and decode protein interactions directly in clinical samples. The technology has been successfully tested on human breast cancer tissue biopsies, where it accurately diagnosed cancer subtypes and revealed higher-order protein interactions linked to cancer aggressiveness. These findings were published in the scientific journal Nature Biomedical Engineering.

TETRIS offers a more detailed and accurate understanding of the molecular mechanisms behind diseases, greatly benefiting cancer diagnostics and treatment. By detecting changes in higher-order protein interactions—often markers of aggressive cancers—this technology enables more personalized clinical decisions. Designed for scalability and adaptability, TETRIS can process large numbers of samples and deliver rapid results using existing lab infrastructure, making it suitable for integration into routine clinical workflows. For instance, in a doctor’s office, samples obtained through fine-needle aspiration—a minimally invasive biopsy—can be quickly analyzed to guide treatment decisions. The researchers plan to expand TETRIS to other types of cancers and neurological diseases, potentially leading to new diagnostic tools and treatments for a range of illnesses.

“Think of proteins as delegates at a scientific conference. Each delegate spots a name tag with a unique barcode,” said Associate Professor Brian Lim, who led the development of algorithms used to process the data collected by TETRIS. “When they interact, or ‘shake hands’, TETRIS captures these interactions by linking their barcodes together. This creates a chain of interactions that we can subsequently read and decode via algorithms. Just like seeing who is chatting to whom at the conference, TETRIS enables us to see how proteins interact within cells, providing us with a lens through which we can understand and diagnose diseases more effectively.”

Related Links:
iHealthtech


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
hCG Whole Blood Pregnancy Test
VEDALAB hCG-CHECK-1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.