Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Molecular Profiling Improves Diagnosis for Children with High Risk Cancers

By LabMedica International staff writers
Posted on 03 Jun 2024

Cancer remains the leading cause of disease-related death among children in most developed nations, and approximately one-fourth of these patients are diagnosed with aggressive, high-risk, or relapsed cancers, facing a dismal five-year survival rate of under 30%. More...

Diagnosing these conditions accurately can be challenging, and even survivors often endure lifelong side effects from the harsh treatments required for their recovery. Now, researchers have demonstrated that through precision medicine, not only can diagnoses be more accurate, but implementing precision-guided, targeted treatments earlier can also enhance the two-year progression-free survival rates for young cancer patients.

The Zero Childhood Cancer National Precision Medicine Program (ZERO) (Randwick, Australia), initially aimed at children with high-risk cancers, now includes all young cancer patients in Australia. Since its inception in 2017, the program has enrolled over 1,600 children. ZERO’s inaugural clinical trial, which ran from 2017 to 2022, yielded insights into genetic predispositions to cancer by identifying gene variants in the germline, or child genomic cancer risk, in 16% of children with high-risk cancers. The study revealed that whole genome sequencing (WGS) was more effective in detecting these germline cancer predisposition variants than traditional clinical testing methods. This is largely because more than half of these variants had not been previously detected in standard clinical settings, as the patients did not meet conventional testing criteria. Moreover, about 70% of these germline variants were not previously associated with the cancer types observed in the patients.

Interestingly, 80% of these newly identified variants had implications for cancer surveillance and risk reduction among the patients' relatives, offering a much greater benefit than standard clinical practices. This finding holds profound implications for both patients and their families. Moving forward, researchers aim to enhance the application of precision medicine by identifying new cancer-driving targets, aligning these targets with more effective and less harmful treatments, and developing better, minimally invasive methods to monitor the behavior of a child’s cancer. They also plan to speed up access to clinical trials by expanding the ability to match more targets with appropriate treatments and aim to integrate precision medicine more seamlessly into standard healthcare systems.

“The tools needed to implement precision medicine more widely are not cheap, but its unquestionable promise in better stratifying the diagnosis and identifying the most likely effective targeted treatments for an individual’s cancer, together with the reduction in costs as technologies, computational capabilities, and automation improves leads me to believe that, in the future, multiomic profiling driving research-guided clinical care will be the gold standard, not just in cancer, but in many other diseases too,” said Associate Professor Vanessa Tyrrell, Director of ZERO.

Related Links:
Zero Childhood Cancer Program


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Parainfluenza Virus Test
PARAINFLUENZA ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.