Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Method Combining Nano Informatics and AI Paves Way for Cancer Blood Tests

By LabMedica International staff writers
Posted on 31 May 2024

Current diagnostic methods for cancer often fall short in terms of precision and efficiency. More...

Traditional techniques, such as imaging scans and tissue biopsies, are invasive, costly, and time-consuming. These methods can lead to treatment delays and potential misdiagnoses, as they may not fully capture the dynamic nature of cancer progression or provide detailed insights into the disease at the cellular level. As a result, patients might face delayed diagnoses, less than-optimal treatment outcomes, and increased psychological stress. These challenges underscore the critical need for more effective and non-invasive diagnostic tools. Now, a promising new method combines nano informatics and machine learning to predict cancer cell behavior with high accuracy. This innovative approach could potentially transform how cancer is diagnosed and treated by allowing for the quick identification of different cancer cell subpopulations based on their biological behaviors.

This novel method introduced in a recent study at the Hebrew University of Jerusalem combines nano informatics and machine learning to precisely predict cancer cell behaviors. This method facilitates the identification of cell subpopulations with unique characteristics, such as varying levels of drug sensitivity and potential for metastasis. This advancement could revolutionize cancer diagnostics and treatment, promoting personalized medicine by enabling fast and precise testing of cancer cell behaviors directly from patient biopsies. This could also lead to the development of new clinical tests for monitoring disease progression and treatment efficacy.

The study began by exposing cancer cells to differently sized particles, each marked with a distinct color. The researchers then measured the exact amount of particles ingested by each cell. Using machine learning algorithms, they analyzed these particle uptake patterns to predict crucial behaviors of the cells, such as their sensitivity to drugs and their potential to metastasize. This significant discovery could pave the way for breakthroughs in cancer diagnosis and treatment, enabling the identification of distinct cancer cell subpopulations through simple and expedient tests. This research sets the stage for developing new clinical tests that could markedly improve patient care.

"Our method is novel in its ability to distinguish between cancer cells that appear identical but behave differently at a biological level," said doctoral student Yoel Goldstein who led the study, which was published in Science Advances on May 29, 2024. "This precision is achieved through algorithmic analysis of how micro and nanoparticles are absorbed by cells. Being capable to collect and analyze new types of data brings up new possibilities for the field, with the potential to revolutionize clinical treatment and diagnosis through the development of new tools."

"This discovery allows us to potentially use cells from patient biopsies to quickly predict disease progression or chemotherapy resistance," stated Prof. Ofra Benny from the School of Pharmacy in the Faculty of Medicine. "It could also lead to the development of innovative blood tests that assess the efficacy of targeted immunotherapy treatments as example."

Related Links:
The Hebrew University of Jerusalem


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.