We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New DNA Origami Technique to Advance Disease Diagnosis

By LabMedica International staff writers
Posted on 15 May 2024

DNA origami is a method used to create nanostructures with exceptional precision, utilizing DNA strands as the foundational building blocks. More...

These structures, however, are inherently fragile and prone to disintegration under biological conditions, such as fluctuations in temperature or the presence of certain enzymes in living organisms. To address this vulnerability, researchers have now devised an innovative method to both customize and strengthen DNA origami, offering the potential to advance drug delivery and disease diagnostics.

A team of scientists from the universities of Portsmouth (Portsmouth, UK) and Leicester (Leicester, UK) has pioneered a novel approach to reinforce these origami structures, making them both stronger and more adaptable through a process they call triplex-directed photo-cross-linking. This technique involves the strategic addition of new nucleotide sequences to the DNA during the design phase. These sequences are the basic building blocks of DNA and act as attachment points for functional molecules, enhancing the structure's stability and functionality.

The attachment of these molecules is facilitated using triplex-forming oligonucleotides that carry a cross-linking agent. A chemical reaction driven by UVA light then permanently binds these molecules to the DNA, creating what the researchers describe as “super-staples.” These staples significantly enhance the integrity of the structure, making it less susceptible to thermal degradation and enzymatic breakdown. This new method is both scalable and economical, compatible with existing origami designs, and does not require redesigning the scaffold. It can be implemented using just a single strand of DNA. DNA origami is currently being applied in several biomedical fields, including vaccines, biological nanosensors, drug delivery systems, structural biology, and carriers for genetic material.

"The potential applications of this technique are far-reaching. The ability to tailor DNA origami structures with specific functionalities holds immense promise for advancing medical treatments and diagnostics,” said Dr. David Rusling from the University of Portsmouth’s School of Pharmacy and Biomedical Sciences. "We envision a future where DNA origami structures could be used to deliver drugs or DNA directly to diseased cells, or to create highly sensitive diagnostic tools.”

Related Links:
University of Portsmouth
University of Leicester


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Automated Staining Unit
RAL Stainer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.