Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Protein Biomarker to Help Develop Blood-Based Tests for Aggressive Neuroendocrine Carcinomas

By LabMedica International staff writers
Posted on 16 Feb 2024

Neuroendocrine carcinomas, such as neuroendocrine prostate cancer and small-cell lung cancer, originate in hormone-releasing cells and can develop in various organs, including the prostate and lungs. More...

While they are not the most prevalent cancer type in these organs, they often have a poor prognosis and limited therapeutic options. Current treatments for these cancers include chemotherapy, radiation, and immunotherapy combinations. Neuroblastoma, predominantly found in young children, develops from immature nerve cells, often in the adrenal glands or nerve tissue along the spine, chest, abdomen, or pelvis. Despite treatment efforts, these therapies only extend survival by a few months, underscoring the need for better therapeutic targets and less invasive diagnostic approaches for these malignancies.

Investigators from the UCLA Health Jonsson Comprehensive Cancer Center (Los Angeles, CA, USA) have identified UCHL1, a protein found in aggressive neuroendocrine carcinomas and neuroblastoma, as a potential molecular biomarker for diagnosing these cancers and predicting and monitoring therapy responses. They also discovered that using a UCHL1 inhibitor, either alone or combined with chemotherapy, significantly delayed neuroendocrine carcinomas and neuroblastoma growth and spread in pre-clinical models. To find druggable targets for neuroendocrine carcinomas and neuroblastoma, the researchers first analyzed publicly available proteomics data and identified UCHL1 as one of the top druggable proteins.

UCHL1 levels in tissues from various neuroendocrine carcinoma patients revealed elevated levels in neuroendocrine prostate cancer, lung carcinoid, small-cell lung cancer, neuroblastoma, and other neuroendocrine neoplasms. This indicates that UCHL1 could be a common drug development target in neuroendocrine cancers due to its higher expression in these tumors compared to non-neuroendocrine tissues. The team then tested the therapeutic potential of blocking UCHL1 in pre-clinical models of neuroendocrine carcinomas and neuroblastoma. This research can help develop new minimally invasive blood-based tests to detect and monitor therapy responses in patients with neuroendocrine carcinomas, such as highly aggressive neuroendocrine prostate cancer and small-cell lung cancer, and neuroblastoma. It also lays the foundation for new clinical trials to test UCHL1 inhibition as a new treatment approach that could help reduce deaths associated with aggressive diseases.

“Our study demonstrates the therapeutic potential of targeting UCHL1 and its utility as a detection tool in neuroendocrine carcinomas and neuroblastoma in pre-clinical models creating a critical translational link between the study and the diagnosis and treatment of patients with these malignancies,” said Dr. Tanya Stoyanova, associate professor of molecular and medical pharmacology and urology at the David Geffen School of Medicine at UCLA.

Related Links:
UCLA Health


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.