We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Groundbreaking CRISPR Technology Could Revolutionize Diagnosis of Genetic Diseases

By LabMedica International staff writers
Posted on 29 Jan 2024
Print article
Image: A study could pave the way for better diagnosis of rare genetic diseases (Photo courtesy of 123RF)
Image: A study could pave the way for better diagnosis of rare genetic diseases (Photo courtesy of 123RF)

Diagnosing rare genetic diseases presents a significant challenge due to their complex and often hidden nature. These conditions can arise from a diverse array of genetic variations, many of which are uncommon or specific to each individual, complicating the identification of the exact cause of symptoms. Until recently, unraveling these mysteries involved extensive genetic testing and comparing an individual’s genetic profile against established disease patterns. Complicating matters further, many relevant genes are inactive in commonly tested tissues like blood and skin, which makes it difficult to get a clear picture of the genetic basis of these diseases. This complexity not only prolongs the diagnostic process but also extends patient and family uncertainty and delays the initiation of suitable treatments. Now, a new study could mark a significant step forward in the rapid and efficient diagnosis of these complex diseases, which can affect any part of the body.

At Aarhus University in Denmark, researchers have employed CRISPR technology to activate genes in easily accessible cells such as skin or blood. This technique enables the measurement of the correct assembly of messenger RNA - a biological process known as splicing. This advancement is significant since approximately 19% of genes associated with diseases are inactive in readily obtainable tissues like skin and blood cells. Using CRISPR activation, a groundbreaking method that “switches on” normally inactive genes, the researchers successfully activated the MPZ gene, typically active only in the insulating layer of nerve pathways. By activating this gene in skin cells, the team has opened new avenues for analyzing, diagnosing, and understanding genetic diseases.

This innovative approach aims to enhance the efficiency, accuracy, and accessibility of diagnosing genetic diseases. The research team is already working to integrate this technology into clinical diagnostics. This method could significantly contribute to making accurate diagnoses when splicing variants are identified. Furthermore, the team is exploring the wider application of this method and plans to validate a larger panel of genes to determine how the technique can be expanded and modified for even simpler clinical applications.

"With CRISPR activation, the gene can be turned on in a natural environment. There's no need for gene modification in cell models; one can simply take a sample from the patient," said Uffe Birk Jensen from Aarhus University. “The same method can be used for different patients and easily adapted to other genes, and the advantage is that it's very fast with the possibility of results within a few weeks.”

Related Links:
Aarhus University

Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Influenza Virus Test
NovaLisa Influenza Virus B IgM ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.