We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Liquid Biopsy Approach Improves Blood Tests’ Ability to Detect Circulating Tumor DNA

By LabMedica International staff writers
Posted on 22 Jan 2024
Print article
Image: MIT researchers have improved the ability of blood tests to detect and monitor cancer (Photo courtesy of 123RF)
Image: MIT researchers have improved the ability of blood tests to detect and monitor cancer (Photo courtesy of 123RF)

Tumors continuously release DNA from dying cells into the bloodstream, which is rapidly broken down. This makes it difficult for existing blood tests to detect the minute amounts of tumor DNA present at any given time. Now, a team of researchers has developed an innovative method to amplify the detection of tumor DNA in blood, a breakthrough that could enhance cancer diagnosis and treatment monitoring.

Researchers at Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) have created "priming agents," injectable molecules that temporarily slow the clearance of circulating tumor DNA from the bloodstream. These priming agents target the body’s two main mechanisms for removing circulating DNA: DNases, enzymes that break down DNA in the blood, and macrophages, immune cells that absorb cell-free DNA during blood filtration through the liver. The researchers developed two types of priming agents. The first is a monoclonal antibody that attaches to circulating DNA, shielding it from DNases. The second type is a nanoparticle designed to prevent macrophages from absorbing cell-free DNA, utilizing the cells’ tendency to ingest synthetic nanoparticles. After injecting these agents, the DNA levels in the bloodstream rise for one to two hours before normalizing within about 24 hours.

In experiments with mice transplanted with lung-tumor-inducing cancer cells, the researchers demonstrated that these priming agents could increase the amount of recoverable circulating tumor DNA in a blood sample by up to 60-fold. Once collected, these blood samples can undergo the same sequencing tests used in liquid biopsy samples, identifying tumor DNA and specific sequences that indicate tumor types and potential treatments. The priming agents also show promise in early cancer detection. In mice with a low cancer burden, using the nanoparticle priming agent before drawing blood allowed the detection of circulating tumor DNA in 75% of the mice, a significant improvement compared to undetectable levels without the priming agents.

“A tumor is always creating new cell-free DNA, and that’s the signal that we’re attempting to detect in the blood draw. Existing liquid biopsy technologies, however, are limited by the amount of material you collect in the tube of blood,” said J. Christopher Love, the Raymond A. and Helen E. St. Laurent Professor of Chemical Engineering at MIT. “Where this work intercedes is thinking about how to inject something beforehand that would help boost or enhance the amount of signal that is available to collect in the same small sample.”

“One of the greatest hurdles for cancer liquid biopsy testing has been the scarcity of circulating tumor DNA in a blood sample,” added Viktor Adalsteinsson, director of the Gerstner Center for Cancer Diagnostics at the Broad Institute. “It’s thus been encouraging to see the magnitude of the effect we’ve been able to achieve so far and to envision what impact this could have for patients.”

Related Links:
MIT

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Blood Ammonia Test Analyzer
DRI-CHEM NX10N

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.