Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Cerebrospinal Fluid Testing of Alzheimer's Patients to Help Identify Disease Molecular Subtype

By LabMedica International staff writers
Posted on 15 Jan 2024

Scientists have made a significant discovery by identifying five distinct biological variants of Alzheimer's disease, each potentially requiring unique therapeutic approaches. More...

This finding suggests that drugs previously tested for Alzheimer's might have been wrongly deemed ineffective or only slightly beneficial due to these variants being unaccounted for.

At the core of Alzheimer's disease is the accumulation of amyloid and tau proteins in the brain. However, this aggregation is just one aspect of the disease's complexity. Researchers, including those from Amsterdam UMC (Amsterdam, Netherlands), have employed innovative methods to analyze additional biological processes involved in Alzheimer's. These processes, which include inflammation and the growth of nerve cells, were studied through the measurement of various biomarkers in the cerebrospinal fluid of patients exhibiting amyloid and tau accumulations. In their analysis of the cerebrospinal fluid of 419 individuals diagnosed with Alzheimer's, the researchers assessed 1,058 proteins and identified five distinct biological subtypes within the disease. The first subtype is marked by heightened amyloid production, while the second shows a disrupted blood-brain barrier, diminished amyloid production, and reduced neural growth.

These subtypes also exhibit variations in protein synthesis, immune system functionality, and the performance of the organ responsible for cerebrospinal fluid production. Distinct subgroups within these variants were observed to have differing disease progression rates. This discovery holds significant implications for Alzheimer's drug research. A drug effective for one Alzheimer's subtype may not be suitable for another. For instance, a medication designed to reduce amyloid production could be beneficial for patients with increased amyloid production but detrimental to those with reduced levels. There is also the possibility that patients with a certain Alzheimer's variant may experience more side effects compared to those with other variants. The researchers' next goal is to demonstrate that these Alzheimer's subtypes indeed respond differently to medications. This would pave the way for more personalized and effective treatments for Alzheimer's disease in the future.

Related Links:
Amsterdam UMC


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.