Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Simple Blood Test Identifies Organs Likely to Fail First

By LabMedica International staff writers
Posted on 07 Dec 2023

Similar to a typical car or house or society, the speed at which parts of the human body fall apart differs from part to part. More...

In a groundbreaking study, researchers have developed a novel method to analyze organ aging by examining specific proteins or sets of proteins in the blood. This approach can predict an individual's risk for various diseases.

Investigators at Stanford Medicine (Stanford, CA, USA) conducted a study involving 5,678 participants that revealed organ age at varying rates. The research found that when an organ is significantly older than what is typical for a person's chronological age, that individual faces an increased risk for diseases related to that organ, as well as a higher mortality risk. The study found that approximately 20% of healthy adults over 50 have at least one organ aging much faster than normal. This finding suggests that a simple blood test could identify which organs in a person are aging rapidly, potentially allowing for early intervention before symptoms appear. Previous studies have generated single numbers to represent biological age, contrasting with chronological age. However, this new research assigns specific aging numbers to 11 key organs and systems: the heart, fat, lung, immune system, kidney, liver, muscle, pancreas, brain, vasculature, and intestine.

The researchers utilized available technologies and a unique algorithm to measure thousands of blood proteins, identifying nearly 1,000 proteins linked to specific organs. Abnormal protein levels were associated with accelerated aging of corresponding organs, increasing susceptibility to disease and death. They calculated an "age gap" for each organ, representing the difference between its actual and algorithm-predicted age. The study found significant associations between these age gaps and future mortality risk over 15 years, except for the intestine. An accelerated-aging organ, defined as having a biological age one standard deviation higher than the average for that organ in people of the same chronological age, was associated with a 15% to 50% increased mortality risk over the following 15 years.

The study also found that accelerated heart aging significantly increased the risk of heart failure, while older brains correlated with a higher likelihood of cognitive decline. Accelerated aging in the brain or vasculature was a strong predictor of Alzheimer’s disease progression. Additionally, there were clear connections between extremely aged kidneys and conditions like hypertension and diabetes, as well as between aged hearts and atrial fibrillation or heart attacks. The identification of organ-specific proteins that indicate excessive aging could also lead to new therapeutic targets, paving the way for drug development and more personalized medical interventions.

“We can estimate the biological age of an organ in an apparently healthy person,” said the study’s senior author, Tony Wyss-Coray, PhD, a professor of neurology and the D. H. Chen Professor II. “That, in turn, predicts a person’s risk for disease related to that organ.”

Related Links:
Stanford Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
hCG Whole Blood Pregnancy Test
VEDALAB hCG-CHECK-1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.