We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Blood-Based Biomarker Test Predicts Progression to Alzheimer’s in At-Risk Population

By LabMedica International staff writers
Posted on 21 Sep 2023
Print article
Image: A blood biomarker can predict progression to Alzheimer’s disease in at-risk population (Photo courtesy of 123RF)
Image: A blood biomarker can predict progression to Alzheimer’s disease in at-risk population (Photo courtesy of 123RF)

In recent years, there's been an uptick in studies exploring the potential of blood biomarkers like plasma or serum neurofilament light (NfL) in gauging neurodegeneration in Alzheimer's disease (AD). Despite this interest, not many attempts have been made to combine existing findings to evaluate how effective NfL in the blood can be as a marker for neurodegeneration in AD. Moreover, we still need to understand which specific neurodegenerative changes correspond to increased levels of NfL in plasma or serum. Now, neuroscience researchers have confirmed that blood NfL levels can be a good indicator for predicting both the likelihood and rate of progression of neurodegenerative changes in Alzheimer’s disease.

NfL in the blood is easily measurable and minimally invasive, making it a practical choice for a clinical biomarker. While it's true that NfL levels rise during normal aging as a general sign of neuronal damage, the extent and rate of this increase are notably greater in cases of Alzheimer's. Neuroscience researchers at Wayne State University (Detroit, MI, USA) combed through existing studies to explore how NfL levels in blood relate to brain imaging data from MRI or PET scans. Their analysis indicates that elevated NfL levels in the blood correspond to more severe brain shrinkage, particularly in the medial temporal lobe. They also found that higher NfL concentrations are linked with lowered glucose metabolism in the brain and reduced integrity of white matter among those on the Alzheimer's spectrum.

Longitudinal studies have also consistently shown a meaningful connection between NfL levels in the blood and brain shrinkage in areas commonly affected by Alzheimer’s disease. Upon reviewing both cross-sectional and longitudinal data, it was clear that NfL levels in the blood can reliably predict the extent of both brain shrinkage and reduced glucose metabolism in regions frequently impacted by Alzheimer's pathology. The work by neuroscience researchers at Wayne State University highlights that not only is blood NfL effective in predicting how quickly neurodegeneration will progress, but it is also a valuable tool for evaluating the risk of cognitive decline in people who are otherwise mentally sound but have a higher risk for Alzheimer's. The research was published in the journal Brain, Aug. 4, 2023.

“The cross-sectional literature indicates that blood NfL shows great promise as a monitoring biomarker to indicate the severity of neurodegeneration in Alzheimer’s disease,” said Jessica Damoiseaux, Ph.D. “It could be especially useful in persons who show Alzheimer’s pathology but are at present cognitively unimpaired, or in people who are highly likely to develop Alzheimer’s disease due to having the APOE ε4 allele or higher Aβ load.”

Related Links:
Wayne State University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.