We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Mitochondrial DNA Fragments in Blood Could Be Important Biomarkers for Aging and Inflammation

By LabMedica International staff writers
Posted on 26 Jun 2023

Chronic inflammation has been proven to lead to frailty symptoms, memory loss, and other cognitive declines over time. More...

High levels of circulating cell-free genomic DNA (ccf-gDNA), or DNA fragments created due to cell death, in the blood, have been linked with chronic inflammation and frailty. Earlier studies primarily considered ccf-gDNA as a potential biomarker for the cognitive and physical decline associated with aging. Comparable to ccf-gDNA, mitochondrial DNA (ccf-mtDNA) — DNA that is inherited maternally — can be located in cell organelles and is often referred to as the "power plants" within the cells of humans, other animals, plants, and most organisms. Upon natural programmed cell death (apoptosis), mitochondrial DNA is fragmented and left to circulate in the blood, similar to genomic DNA. Large fragments of mitochondrial DNA can trigger chronic inflammation — an immune response similar to the body's reaction to bacteria and viruses — if a traumatic event such as injury, interrupted blood flow, or disease causes cell death. A novel study has now further correlated levels of circulating cell-free DNA in the blood with chronic inflammation and frailty by focusing on mitochondrial DNA rather than solely genomic DNA.

The new findings by researchers at Johns Hopkins Medicine (Baltimore, MD, USA) support the notion that relatively high levels of DNA fragments in routine blood samples could serve as precise and valuable biomarkers, or indicators, for a broad spectrum of cognitive and physical declines. The analysis also discovered relationships between these DNA fragments and the presence of other established aging biomarkers, such as cytokine proteins, tumor necrosis factors (proteins produced by the immune system in response to tumor growth), and proteins generated by the liver during inflammation. For this study, the research team analyzed blood samples taken from 672 community-dwelling men and women in the mid-1990s, who had an average age of 80 at the start of the study period. These participants were selected from three cohort studies.

All the participants underwent annual physical and cognitive testing at the time of each blood draw, which included memory, perception, and physical tests for grip strength, gait, fatigue, and motor function. The researchers then compared levels of long and short CCF-mtDNA fragments against four established biomarkers of inflammation: cytokine proteins, two types of tumor necrosis factors, and inflammatory liver proteins. The results revealed significant correlations between these four biomarkers and increased levels of CCF-mtDNA. For instance, if a patient's blood sample had high levels of one or more of these known inflammation biomarkers, the sample also had high levels of CCF-mtDNA. Additionally, the researchers found that while high levels of circulating genomic DNA were associated with cognitive and physical decline, high levels of mitochondrial DNA were more strongly linked to physical decline only. The researchers plan to extend their studies to younger adults in order to determine the earliest time these cell-free DNA fragments become significant in blood samples. Moreover, they aim to decipher precisely how these DNA fragments contribute to inflammation and explore possible interventions before they precipitate cognitive and physical decline.

“By expanding the types of DNA screened for in the blood, the new research has expanded efforts to better understand and predict physical and cognitive declines that come with aging,” says Peter Abadir, M.D., associate professor of geriatric medicine and gerontology at the Johns Hopkins University School of Medicine.

Related Links:
Johns Hopkins Medicine 


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.