We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Biomarker-Based Approach Could Identify Early Risk of Pancreatic Cancer

By LabMedica International staff writers
Posted on 20 Mar 2023

The incidence of pancreatic cancer is increasing, although the cause of its growing prevalence remains unknown. More...

Even if pancreatic cancer is detected in its early stages, it usually spreads cells throughout the body, leading to an elevated risk of recurrence. While the majority of precancerous cysts known as intraductal papillary mucinous neoplasms (IPMNs) do not progress to pancreatic cancer, existing diagnostic evaluations - comprising clinical, radiographic, laboratory, endoscopic, and cytologic analyses - exhibit an overall accuracy of about 60%. Earlier, less precise methods of characterizing IPMNs have failed to identify reliable cancer markers. Now, researchers have discovered a set of biomarkers that may help understand whether cysts on the pancreas are likely to remain benign or develop into cancer.

The discovery by a research team at Duke Health (Durham, NC, USA) is a crucial first step towards establishing a clinical method for classifying lesions on the pancreas that have the maximum risk of turning cancerous, allowing for their removal before they can start spreading. If the biomarker-based approach is successful, it could help overcome the biggest obstacle in reducing the risk of developing pancreatic cancer, which is rising and grows silently before being diagnosed usually during abdominal scans.

By using digital spatial profiling, it is possible to selectively analyze individual groups of cells. This approach was adopted by Duke researchers, allowing them to identify several genetic mutations that both promote and suppress the progression of pancreatic cancer. Additionally, they identified markers capable of distinguishing between two primary variants of IPMN, as well as found distinct markers for defining a third variant that usually results in less severe disease. Some studies have inferred that inflammation contributes significantly to pancreatic cancer development. A clinical trial being conducted at Duke aims to determine whether anti-inflammatory therapy can reduce cancer progression in IPMN patients.

“Most IPMNs will never progress to pancreas cancer, but by distinguishing which ones will progress, we are creating an opportunity to prevent an incurable disease from developing,” said senior author Peter Allen, M.D., chief of the Division of Surgical Oncology at in the Department of Surgery at Duke University School of Medicine. “We found very distinct markers for high-grade cell abnormalities, as well as for slow-growing subtypes. Our work now is focusing on finding it in the cyst fluid. If we can identify these unique markers in cyst fluid, it could provide the basis for a protein biopsy that would guide whether we should remove the cyst before cancer develops and spreads.”

Related Links:
Duke Health 


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.