We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Technique Designs Nucleic Acid Probes to Detect Rapidly Mutating Bacteria and Viruses

By LabMedica International staff writers
Posted on 16 Feb 2023

The COVID-19 pandemic has shown that the microbes responsible for some infections can rapidly mutate into variants which evade detection and treatment. More...

Now, researchers have developed a technique called AutoPLP that designs nucleic acid probes to help quickly, accurately and easily detect new variants of pathogens which can be hard to trace. This could help prevent infections that have the potential to spread quickly due to these dangerous variants.

Several diagnostics like the ones based on the polymerase chain reaction (PCR) detect pathogens by analyzing genetic material. Rolling circle amplification (RCA) works similarly but eliminates the need for complex temperature cycling unlike PCR. Both the approaches need nucleic acid probes with sequences that match those of the target pathogen in specific locations, although RCA utilizes highly specific “padlock probes” (PLPs). When a pathogen mutates, there is also a change in its genetic sequence, forcing researchers to keep redesigning their probes. So, researchers from the Indian Institute of Technology (IIT) Madras (Chennai, India) set out to create a tool that could automatically design these PLPs, as well as systematically take into account all the required technical parameters simultaneously to make the overall process easier and more robust.

The new tool, a computer program termed AutoPLP has been named after the PLPs it designs. The program takes the genome sequences of similar pathogens as input and runs a series of analyses and database searches, outputting a set of customized PLP sequences. Using the program, the researchers designed probes against the rabies virus and Mycobacterium tuberculosis. In the case of the rabies virus, AutoPLP targeted three genes, yielding probes with a higher and narrower range of melting temperatures as compared to those in the literature. In the case of M. tuberculosis, the team designed 13 probes that specifically targeted the two genes responsible for drug-resistant strains with the program. According to the researchers, the new tool could speed up the discovery of new pathogen variants, thus helping fight them rapidly and effectively through the use of precise molecular diagnostics.

Related Links:
IIT Madras


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
hCG Whole Blood Pregnancy Test
VEDALAB hCG-CHECK-1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.