We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Technique Designs Nucleic Acid Probes to Detect Rapidly Mutating Bacteria and Viruses

By LabMedica International staff writers
Posted on 16 Feb 2023

The COVID-19 pandemic has shown that the microbes responsible for some infections can rapidly mutate into variants which evade detection and treatment. More...

Now, researchers have developed a technique called AutoPLP that designs nucleic acid probes to help quickly, accurately and easily detect new variants of pathogens which can be hard to trace. This could help prevent infections that have the potential to spread quickly due to these dangerous variants.

Several diagnostics like the ones based on the polymerase chain reaction (PCR) detect pathogens by analyzing genetic material. Rolling circle amplification (RCA) works similarly but eliminates the need for complex temperature cycling unlike PCR. Both the approaches need nucleic acid probes with sequences that match those of the target pathogen in specific locations, although RCA utilizes highly specific “padlock probes” (PLPs). When a pathogen mutates, there is also a change in its genetic sequence, forcing researchers to keep redesigning their probes. So, researchers from the Indian Institute of Technology (IIT) Madras (Chennai, India) set out to create a tool that could automatically design these PLPs, as well as systematically take into account all the required technical parameters simultaneously to make the overall process easier and more robust.

The new tool, a computer program termed AutoPLP has been named after the PLPs it designs. The program takes the genome sequences of similar pathogens as input and runs a series of analyses and database searches, outputting a set of customized PLP sequences. Using the program, the researchers designed probes against the rabies virus and Mycobacterium tuberculosis. In the case of the rabies virus, AutoPLP targeted three genes, yielding probes with a higher and narrower range of melting temperatures as compared to those in the literature. In the case of M. tuberculosis, the team designed 13 probes that specifically targeted the two genes responsible for drug-resistant strains with the program. According to the researchers, the new tool could speed up the discovery of new pathogen variants, thus helping fight them rapidly and effectively through the use of precise molecular diagnostics.

Related Links:
IIT Madras


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.