We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood Test Could Detect Alzheimer's 10 Years Before Symptoms Show

By LabMedica International staff writers
Posted on 12 Jan 2023

Alzheimer disease accounts for 60 to 70% of all dementia cases. More...

In patients with Alzheimer disease, the abnormal accumulation of the proteins beta-amyloid and tau causes degeneration of nerve cells in the brain. With time, the number of damaged brain neurons increases, affecting cognitive functions like memory and speech. While Alzheimer disease progresses slowly, biological changes in the brain start taking place 20 to 25 years before the patients start exhibiting memory loss and other cognitive symptoms. Hence, early diagnosis can enable the right treatment to be started without delay. Now, a new study on an inherited form of Alzheimer disease has shown that a protein called GFAP is a potential biomarker for very early stages of the disease and could allow for its earlier detection.

Researchers at Karolinska Institutet (Stockholm, Sweden) along with their colleagues have been investigating biomarkers in blood for initial pathological changes in a rare and inherited form of Alzheimer disease that comprises less than 1% of all cases. Those having a parent with Alzheimer disease due to a mutation have a 50% risk of developing the disease. In their study of data collected between 1994 and 2018, the researchers analyzed 164 blood plasma samples from 33 mutation carriers and 42 relatives who did not have the inherited pathogenic predisposition. The results revealed clear changes of several blood protein concentrations in those carrying the mutation.

“Our results suggest that GFAP, a presumed biomarker for activated immune cells in the brain, reflects changes in the brain due to Alzheimer disease that occur before the accumulation of tau protein and measurable neuronal damage,” said the study’s first author Charlotte Johansson, doctoral student at the Department of Neurobiology, Care Sciences and Society, Karolinska Institutet. “In the future it could be used as a non-invasive biomarker for the early activation of immune cells such as astrocytes in the central nervous system, which can be valuable to the development of new drugs and to the diagnostics of cognitive diseases.”

“The first change we observed was an increase in GFAP (glial fibrillary acidic protein) approximately ten years before the first disease symptoms,” added the study’s last author Caroline Graff, professor at the Department of Neurobiology, Care Sciences and Society, Karolinska Institutet. “This was followed by increased concentrations of P-tau181 and, later, NfL (neurofilament light protein), which we already know is directly associated with the extent of neuronal damage in the Alzheimer brain. This finding about GFAP improves the chances of early diagnosis.”

Related Links:
Karolinska Institutet


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Procalcitonin Test
LIAISON B•R•A•H•M•S PCT II GEN
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.