We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Levels of Circulating Cell-Free DNA Predict Risk of Developing Dementia

By LabMedica International staff writers
Posted on 12 Oct 2022

A test that measured the amount of cell-free DNA fragments in the blood was able to identify individuals at higher risk of developing dementia, worsening cognition. More...

and frailty.

Altered cellular equilibrium, seen in cognitive decline and frailty, leads to cell death and turnover, releasing circulating cell-free DNA (ccf-DNA). In a recently published study, investigators at Johns Hopkins University (Baltimore, MD, USA) determined whether serum genomic cell-free DNA (ccf-gDNA) was associated with physical and cognitive decline in older adults.

For this study, the investigators used digital PCR to analyze blood samples from 631 individuals with an average age of 79 years who showed no cognitive impairment when the study began. An array of cognitive and physical traits, risk of dementia, global cognition, and frailty at or nearest the time of blood draw were compared to ccf-DNA levels, with adjustment for age, sex, race, and education. The data gathering period lasted for eight years.

Results across the group showed that higher ccf-gDNA levels were associated with lower global cognition score and slower gait speed at the evaluation nearest to blood draw. Furthermore, higher ccf-gDNA levels were associated with increased odds of incident dementia. Individually, higher levels of ccf-gDNA were associated with steeper general cognitive decline and worsening frailty over the eight years of follow up.

“These ccf-gDNA fragments may trigger long-term chronic inflammatory reactions that have previously been linked to the premature destruction and aging of tissues and organs, including the brain,” said senior author Dr. Peter Abadir, associate professor of geriatric medicine and gerontology at Johns Hopkins University. “The body sees these ccf-gDNA fragments as something that needs to be removed, therefore the body’s immune system is running at a higher rate than it should. Such immune system overdrive may be a factor in identifying the onset of dementia.”

Results of the study were published in the October 11, 2022, issue of the Journal of Alzheimer’s Disease.

Related Links:
Johns Hopkins University 


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.