We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Elevated Blood Levels of Neurofilament Light Chain Predict Likelihood of Neurotoxicity Following CAR-T Immunotherapy

By LabMedica International staff writers
Posted on 06 Sep 2022

An elevated level of neurofilament light chain (NfL) in the blood plasma can identify which patients are likely to develop neurotoxic side effects in the days and weeks following CAR-T cell therapy. More...

Cell-based immunotherapy (CAR-T cell therapy) has revolutionized the treatment of certain types of leukemia and lymphoma. This method is based on chimeric antigen receptor T-cells (also known as CAR-T cells) that have been genetically engineered to produce an artificial T-cell receptor for use in immunotherapy. The receptors are chimeric because they combine both antigen-binding and T-cell activating functions into a single receptor. The premise of CAR-T immunotherapy is to modify T-cells to recognize cancer cells in order to more effectively target and destroy them. In practice, T-cells are harvested, genetically altered, and then infused as CAR-T cells into patients to attack their tumors.

CAR-T cells can be derived either from T-cells in a patient's own blood (autologous) or derived from the T-cells of another healthy donor (allogeneic). Once isolated, these T-cells are genetically engineered to express a specific CAR, which programs them to target an antigen that is present on the surface of tumors. For safety, CAR-T cells are engineered to be specific to an antigen expressed on a tumor that is not expressed on healthy cells.

Neurological toxicity, known as immune effector cell–associated neurotoxicity syndrome (ICANS), is often associated with CAR-T cell treatment. The underlying mechanism is poorly understood. Clinical manifestations include delirium, the partial loss of the ability to speak coherently while still having the ability to interpret language (expressive aphasia), lowered alertness (obtundation), and seizures. During some clinical trials, deaths caused by neurotoxicity have occurred with the main cause of death being cerebral edema.

Recently, neurofilament light chain (NfL), an axonal structural protein with elevated levels in multiple neurodegenerative and neuroinflammatory diseases, has emerged as a potential biomarker for ICANS. It is a biomarker that can be measured with immunoassays in samples of cerebrospinal fluid or plasma and reflects axonal damage in a wide variety of neurological disorders. It is a useful marker for disease monitoring in amyotrophic lateral sclerosis, multiple sclerosis, Alzheimer's disease, and more recently Huntington's disease.

Investigators at Washington University School of Medicine (St. Louis, MO, USA) examined the relationship between NfL and ICANS in order to determine whether levels of NfL prior to commencing CAR-T cell therapy could permit early screening and identification of patients most at risk for development of ICANS.

For this study, the investigators examined plasma NfL levels in 30 patients with detailed medical and treatment history, including all major pre-treatment and post-treatment risk factors. Patients’ NfL levels were measured at seven time points: baseline (pre-lymphodepletion), during lymphodepletion, and one, three, seven, 14, and 30 days post-infusion. Various statistical models were used to determine the association between NfL levels, ICANS, and potential risk factors including demographic (age, sex), oncologic (tumor burden, history of CNS involvement), neurologic (history of nononcologic CNS disease or neuropathy), and neurotoxic exposure histories (vincristine, cytarabine, methotrexate, or CNS radiotherapy).

Results revealed that individuals who developed ICANS had elevations in NfL prior to lymphodepletion and CAR-T cell infusion compared with those who did not develop ICANS. Baseline NfL levels further predicted ICANS development with high accuracy and specificity. Levels of NfL remained elevated across all time points, up to 30 days post-infusion. Baseline NfL levels correlated with ICANS severity but not demographic factors, oncologic history, nononcologic neurologic history, or history of exposure to neurotoxic therapies.

“Our study suggests that some patients receiving CAR-T cell therapy have previously undetected damage to neurons present at baseline, before we even begin preparing them for this treatment,” said first author Dr. Omar H. Butt, instructor in medicine at Washington University School of Medicine. “We do not know the origin of this damage, but it appears to predispose them to developing neurotoxic complications. If we understand who is at risk of these complications, we can take early steps to prevent it or reduce the severity. We are just seeing the tip of the iceberg in terms of the actual disease process, and that is where many of our future studies are going. We are trying to get a better sense of what is causing these changes to begin with. And in later stages, even after symptoms have resolved, we still see these elevated NfL levels.”

The study was published in the September 1, 2022, online edition of the journal JAMA Oncology.

Related Links:
Washington University School of Medicine 


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.