We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




System Separates Circulating Tumor Cells from Blood Samples, Improves Cancer Diagnostics

By LabMedica International staff writers
Posted on 01 Jul 2022

Circulating tumor cells are cells that break off from cancers and are released into the blood stream. More...

They can go on to form the seeds for new tumor formation in other parts of the body, known as metastases. The advantage of isolating them from the blood is that they represent the diversity of cancer cells found in a person’s body and identifying them could lead to more targeted therapies. But current techniques used to do this either miss some types of circulating tumor cells or are done manually, which takes a lot of time and specialized training. Now, a new approach can successfully and rapidly isolate rare circulating tumor cells from patient blood samples. The findings could help improve cancer diagnosis and the ability to provide targeted and personalized treatments.

The fully automated centrifugation approach developed by scientists at Daegu Gyeongbuk Institute of Science and Technology (DGIST, Daegu, Korea) and CTCELLS (Daegu, Korea) is called Continuous Centrifugal Microfluidics – Circulating Tumor Cell Disc (CCM-CTCD). It involves placing a tube containing a blood sample in a machine with a spinning disc. The spinning, or centrifugal force, causes the blood to separate into layers containing different components, with the heavier red blood cells dropping to the bottom, lighter cells floating in a middle layer, and plasma settling at the top.

After the disc begins to spin, a laser motor starts rotating at the same angular velocity and phase. This crucial step allows a laser to move and open a valve in the blood sample tube while the disc continues to spin, maintaining a thin layer of tumor and white blood cells, which are released into a separate chamber. The chamber contains antibodies that specifically attach to and separate white blood cells from the mixture. This allows the circulating tumor cells in the mixture to flow on their own into a final chamber.

The team went on to identify the different types of tumor cells and confirm by subsequent DNA testing that they represent the full diversity of different types of cells in the blood sample. They also used the technique on blood samples from patients with varying stages of lung cancer and found the number of circulating tumor cells in a sample correlated with the stage of disease progression. Identification of the types of tumor cells also allowed them to modify treatment strategies. The team is now working on commercializing the technique for clinical use and hopes to expand its application to isolate other types of cells, including nerve, stem and immune cells.

“Our smart and practical approach realizes a big dream in the field of liquid biopsy and demonstrates high performance across a wide range of cell types and different cancers with full automation,” said Minseok S. Kim at the Department of New Biology at DGIST.

Related Links:
DGIST 
CTCELLS 


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.