We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Nanopore-based miRNA Analysis Detects Early Stage Bile Duct Cancer

By LabMedica International staff writers
Posted on 29 Jun 2022

A recent paper described a nanopore-based method for detecting microRNA expression patterns characteristic for bile duct cancer. More...

Bile duct cancer (cholangiocarcinoma) is an often lethal type of cancer, since by the time of diagnosis most bile duct cancers are already incurable. Thus, methods for the early diagnosis of this cancer are urgently needed.

Adopting a novel approach for early diagnosis of bile duct cancer, investigators at Tokyo University of Agriculture and Technology (Japan) developed a method for detecting microRNA (miRNA) expression patterns from liquid biopsy samples using nanopore-based DNA computing technology.

Using nanopore sequencing, a single molecule of DNA or RNA can be sequenced without the need for PCR amplification or chemical labeling of the sample. The magnitude of the electric current density across a nanopore surface depends on the nanopore's dimensions and the composition of DNA or RNA that is occupying the nanopore. Sequencing is made possible because, passing through the channel of the nanopore, the samples cause characteristic changes in the density of the electric current flowing through the nanopore. Nanopore sequencing has the potential to offer relatively low-cost genotyping, high mobility for testing, and rapid processing of samples with the ability to display results in real-time.

In the current study, a diagnostic DNA with a hairpin structure (HP-dgDNA), which had the ability to detect multiple miRNAs simultaneously, was employed as the computational molecule. The dgDNA was passed through a nanopore, and as the molecule transited the pore, bound miRNAs were “unzipped” from the DNA, resulting in a current inhibition of characteristic amplitude and duration. These perturbations in the current through the pore were measured and used to deduce the properties of the passing molecule.

Using this system of DNA-computing combined with nanopore decoding, the investigators identified the expression patterns of five different types of miRNAs (miR-193, miR-106a, miR-15a, miR-374, and miR-224). These miRNAs were over expressed in bile duct cancer. Moreover, the dgDNA–miRNA complexes could be detected at the attomolar (10–18 M) level, which was a significant improvement compared to previously reported limits of detection (about 10–12 M) for similar analytical platforms.

“DNA computing uses the biochemical reactions of the information-encoding DNA molecules to solve problems based on formal logic, in the same way that normal computers do,” said senior author Dr. Ryuji Kawano, professor of biotechnology and life science at Tokyo University of Agriculture and Technology. “In this case, a diagnostic DNA molecule was designed to be able to bind five different kinds of miRNA associated with bile duct cancer. In the process of binding the miRNA molecules, the diagnostic DNA converts the expression pattern of the miRNAs into the information contained in the form of a nucleic acid structure.”

The nanopore technique was described in the June 26, 2022, online edition of the journal JACS Au.

Related Links:
Tokyo University of Agriculture and Technology 

 


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.