We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Meningioma DNA Methylation Groups Identify Biological Drivers and Therapeutic Vulnerabilities

By LabMedica International staff writers
Posted on 16 May 2022

Meningioma, also known as meningeal tumor, is typically a slow-growing tumor that forms from the meninges, the membranous layers surrounding the brain and spinal cord. More...

Symptoms depend on the location and occur as a result of the tumor pressing on nearby tissue.

Many individuals have meningiomata, but remain asymptomatic, so the meningiomata are discovered during an autopsy. One to two percent of all autopsies reveal meningiomata that were unknown to the individuals during their lifetime, since there were never any symptoms.

A large team of medical scientists led by those at the University of California at San Francisco (San Francisco, CA, USA) have identified three DNA methylation-based meningioma groups with an epigenetic profiling study that took into account other molecular features including copy number variant (CNV) profiles of the primary intracranial tumors.

The team performed array-based methylation profiling on samples from 565 meningioma patients treated at two centers in the USA and Hong Kong between the early 1990s and 2019. The team used a pipeline called SeSAMe to account for CNV effects on methylation before analyzing methylation data alongside targeted sequencing, exome sequencing, chromatin immunoprecipitation sequencing, transcriptomic and proteomic profiling, and other data on a subset of meningioma tumors.

The team's integrated molecular analyses highlighted Merlin-intact meningioma, immune-enriched meningioma, and the hypermitotic meningioma groups. Along with comparisons to methylation groups defined by analyses that did not take CNVs into account, the group investigated further with CRISPR-based gene editing and other functional studies. In contrast to meningiomas arising in neurofibromatosis type 2 patients missing an NF2 gene coding for the Merlin tumor suppressor protein, the scientists found that more than one-third of the meningiomas fell into a Merlin-intact group with the most favorable clinical outcomes and vulnerability to cytotoxic therapy.

The investigators classified 28% of the tumors into a hypermitotic meningioma group linked to cytotoxic therapy resistance and poor outcomes. The remaining tumors, almost 40% of the meningioma set, fell into an immune-enriched group marked by immune cell infiltration, lymphatic vessel features, and intermediate survival outcomes. With a series of follow-up analyses, they saw signs that tumors classified into poor- or intermediate-outcome groups may be particularly apt to respond to cell cycle inhibitor treatments.

David Raleigh, MD, PhD, an Assistant Professor and senior author of the study, said, “These findings underscore the importance of DNA methylation profiling for meningioma patients, which will ultimately allow for selection or enrollment of clinical trials of cell cycle inhibitors or other molecular therapies.” The study was published on May 9, 2022 in the journal Nature Genetics.

Related Links:
University of California at San Francisco 


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.