We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Liquid Biopsy Allows Monitoring of COVID-19 Damage to Cells, Tissues, and Organs

By LabMedica International staff writers
Posted on 09 Feb 2021
A recent study presented results that point to the utility of exploiting cell-free DNA as an analyte to monitor the damage caused to cells, tissues, and organs by COVID-19.

While COVID-19 primarily affects the lungs, evidence of systemic disease with multi-organ involvement has emerged. More...
In order to better understand this phenomenon, investigators at Cornell University (Ithaca, NY, USA) and colleagues in the United States and Canada developed a blood test to broadly quantify cell, tissue, and organ specific injury due to COVID-19.

For this study, the investigators employed a liquid biopsy method to conduct genome-wide methylation profiling of cell-free DNA in the blood plasma. They assessed the utility of this test to identify subjects with severe disease in two independent, longitudinal cohorts of hospitalized patients. Cell-free DNA profiling was performed on 104 plasma samples from 33 COVID-19 patients and compared to samples from patients with other viral infections and healthy controls.

The investigators reported finding evidence of injury to the lung and liver and involvement of red blood cell progenitors associated with severe COVID-19. Furthermore, a high concentration of cell-free DNA in the blood was itself a strong prognostic marker for severe COVID-19 cases.

“A lot of what we have learned about the involvement of the virus with different organs is from invasive biopsies, postmortem biopsies,” said senior author Dr. Iwijn De Vlaminck, assistant professor of biomedical engineering at Cornell University. “But a liquid biopsy is potentially very useful as a biological measurement, a way to study what is going on in patients who have different types of symptoms, for example. It could be used to assess disease severity and help stratify patients in the care system. It could also potentially be a surrogate biomarker that you could include in randomized controlled trials of various anti-COVID therapies and anti-virals.”

The cell-free DNA study was published in the January 16, 2021, online edition of the journal Cell Med.

Related Links:
Cornell University


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Automated Staining Unit
RAL Stainer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.