We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Roche Diagnostics

Develops, manufactures, and markets a wide range of in vitro diagnostic systems, instruments, reagents, and tests read more Featured Products: More products

Download Mobile App




High-Throughput Isothermal HPV Test Validated

By LabMedica International staff writers
Posted on 10 Mar 2020
Human papillomavirus (HPV) is a viral infection that is passed between people through skin-to-skin contact. More...
There are over 100 varieties of HPV, more than 40 of which are passed through sexual contact and can affect the genitals, mouth, or throat.

Some types of HPV are considered high risk because they can cause cancer. HPV testing detects the genetic material (DNA or messenger RNA) of high-risk HPV (hrHPV), primarily to screen for cervical cancer or to determine whether there is a risk of cervical cancer.

A large team of international scientists led by the Memorial Sloan Kettering Cancer Center (New York, NY, USA) performed an analytic validation of the AmpFire Multiplex HPV assays (AtilaBiosystems, Mountain View, CA, USA) on formalin-fixed, paraffin-embedded (FFPE) cervix/vulva and oropharynx diagnostic tissue samples. The AmpFire assay incorporates a novel isothermal multiplex amplification coupled with real-time fluorescent detection to detect and genotype 15 high-risk (HR) HPV genotypes.

The performance of the AmpFire assays in clinical samples was evaluated using 214 FFPE specimens. The international team also evaluated the Atila AmpFire HPV test comparing it to gold-standard testing, the Roche Cobas HPV and LinearArray tests (Risch-Rotkreuz, Switzerland). The team reported that the limits of detection determined by plasmids cloned with HPV genotype-specific sequences were two copies/reaction for HPV16, HPV18, and some HR HPV genotypes, and 20 copies/reaction for the remaining HR HPV genotypes.

The AmpFire assay failed in one clinical specimen for an invalid rate of 0.5%. The AmpFire assay detected HPV in clinical samples with positive percent agreements of 100% for HPV16, 100% for HPV18, and 94.7% for non-16/18 HR HPV, and 100% negative percent agreements for HPV16, HPV18, and non-16/18 HR HPV. Importantly, 53 of the FFPE clinical samples were biopsies of the oropharynx. In the USA, 70% of oropharyngeal cancers are HPV-related and fresh and preserved biopsy samples are frequently tested for HPV.

The authors concluded that qualitative detection agreement was obtained in their reproducibility study. In summary, the Atila AmpFire HPV assay demonstrated excellent analytic sensitivity and specificity for detection and genotyping of 15 HR HPV genotypes. Assay parameters of simple specimen processing, small sample size requirement, rapid turnaround time, and being near instrument-free render it well suited for HPV detection and genotyping in FFPE specimens. The study was published on January 21, 2020 in the Journal of Molecular Diagnostics

Related Links:
Memorial Sloan Kettering Cancer Center
AtilaBiosystems
Roche



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.