We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




CSF Liquid Biopsy Sequencing Tracks Glioma Evolution

By LabMedica International staff writers
Posted on 06 Feb 2019
Genetic tumor profiling of gliomas is used to classify disease and guide therapy, but involves brain surgery for tissue collection; repeated tumor biopsies may be necessary for accurate genotyping over the course of the disease.

While the detection of circulating tumor DNA (ctDNA) in the blood of patients with primary brain tumors remains challenging, sequencing of ctDNA from the cerebrospinal fluid (CSF) may provide an alternative way to genotype gliomas with lower morbidity and cost.

A large team of scientists led by the Memorial Sloan Kettering Cancer Center (New York, NY, USA) tracked traces of gliomas in CSF by collecting samples from 85 glioma patients who previously received a lumbar puncture because they showed neurological signs or symptoms of brain tumors. More...
Patient diagnoses included 13 grade II gliomas, 26 grade II gliomas, and 54 grade IV gliomas. All patients had received treatment for glioma before CSF collection, including surgery, radiation, and at least one systemic tumor-directed chemotherapy.

After extracting 3 mL of CSF from each patient through a spinal tap, the team ran the sample on a centrifuge to separate the pellets from supernatant, which contained ctDNA. While normal CSF typically contains a low white blood cell count, the team noted that including pellets dilutes the tumor signature in a sample. The investigators used MSKCC's MSK-IMPACT next-generation sequencing assay to analyze samples for genes relevant to glioma. Afterward, the team ran the results through a bioinformatics analysis pipeline, which included a mutation-calling element that MSKCC developed with the MSK-IMPACT.

The scientists detected tumor-derived DNA in CSF from 42 out of 85 patients and found that the genetic material was linked to disease burden and adverse outcome. They also examined whether combinations of genetic alterations, lower-grade glioma signatures, that they detected in the CSF could be matched to the signature of the original tumor. Sequencing all available tumor biopsies from 36 patients who had positive CSF ctDNA, they found that CSF and tumor samples shared mutations in all 20 patients with wild type glioblastomas (GBMs) that were not hypermutated. The most common alterations in the samples included mutations in the TERT promoter, the protein coding regions of TP53, IDH1, deletions of CDKn2A and CDKN2B, amplifications of EGFR, and EGFR-variant III deletion.

Alterations that occur early during tumorigenesis, such as co-deletion of chromosome arms 1p and 19q (1p/19q codeletion) and mutations in the metabolic genes isocitrate dehydrogenase 1 (IDH1) or IDH2, were shared in all matched ctDNA-positive CSF–tumor pairs, whereas growth factor receptor signaling pathways showed considerable evolution. Michael Berger, PhD, a co-author of the study, said, “Compared to other liquid biopsy applications, cerebrospinal fluid has the potential to enable more sensitive detection of ctDNA because most of the cell-free DNA in CSF is shed from tumor cells. There is very little background DNA from non-cancerous cells, in contrast to plasma where often only a tiny fraction of the cell-free DNA is actually derived from tumor cells.” The study was published on January 23, 2019, in the journal Nature Research.

Related Links:
Memorial Sloan Kettering Cancer Center


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.