We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Portable Olfactory Sensor Designed for Diagnosis of Bacteria

By LabMedica International staff writers
Posted on 22 Jan 2018
A portable electronic "nose" (eNose) has been designed to rapidly detect and identify the most common bacteria causing soft tissue infections.

Rapid diagnosis of wound infections is based on bacterial stains, cultures, and polymerase chain reaction assays, and the results are available after several hours at the earliest, but more often not until after days of waiting. More...
Therefore, antibiotic treatment is often administered empirically without a specific diagnosis.

To rectify this situation, a team of Finish bioengineers developed eNose, a device able to produce "an olfactory profile" for each molecular compound in gaseous headspace created by bacterial infection. The profile was analyzed by a computer programmed to differentiate between different compounds.

The investigators used the eNose system for a proof-of-concept study aimed at differentiating the most relevant bacteria causing wound infections. The study utilized a set of clinical bacterial cultures on identical blood culture dishes, and established bacterial lines from the gaseous headspace.

Results revealed that the eNose system was capable of differentiating both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa, and Clostridium perfringens with an accuracy of 78% within minutes without prior sample preparation. Most importantly, the system was capable of differentiating MRSA from MSSA with a sensitivity of 83%, a specificity of 100%, and an overall accuracy of 91%.

"Our aim was to create a method for the rapid diagnosis of soft tissue infections. If we had such a method, treatment could be started in a timely manner and targeted to the relevant pathogen directly. This would reduce the need for empirical treatments and shorten diagnostic delays," said first author Dr. Taavi Saviauk, a researcher in the faculty of medicine and life sciences at the University of Tampere (Finland). "The portable eNose device we used does not require laboratory conditions or special training, so it is well suited for outpatient use. The results of this study are a significant step towards our goal."

The eNose study was published in the January 2018 issue of the journal European Surgical Research.

Related Links:
University of Tampere


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.