We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Bacterial Composition Linked to Breast Cancer

By LabMedica International staff writers
Posted on 19 Oct 2017
Breast cancer is the second most common cancer in women (after skin cancer) in the USA, where one in eight women will develop the disease in their lifetimes. More...
Bacteria that live in the body is known as the microbiome, and influence many diseases.

Most studies have been done on the "gut" microbiome, or bacteria in the digestive tract. Scientists have long suspected that a "microbiome" exists within breast tissue and plays a role in breast cancer, but it has not yet been characterized. Recently they have uncovered differences in the bacterial composition of breast tissue of healthy women versus women with breast cancer.

Scientists at the Cleveland Clinic (Cleveland, OH, USA) examined the tissues of 78 patients who underwent mastectomy for invasive carcinoma or elective cosmetic breast surgery. In addition, they examined oral rinse and urine to determine the bacterial composition of these distant sites in the body. Breast cancer patients eligible for inclusion for this study were over 18 years of age, female, had tumors greater than or equal to 2 cm in size, and were undergoing mastectomy.

The team extracted total DNA was from the breast tissue, environmental controls, urine, and oral rinse pellets using PowerMag Microbiome RNA/DNA Isolation Kit. For breast samples, the polymerase chain reaction (PCR) product showed nonspecific bands on a 1% agarose gel. A second round of Ampure XP cleanup was performed and resulting libraries were quantified with Quantiflour dsDNA system. Libraries were validated on a Bioanalyzer DNA 1000 chip to verify size and sequenced.

The scientists found that cancer patient breast tissue microbiomes clustered significantly differently from non-cancer patients, largely driven by decreased relative abundance of Methylobacterium in cancer patients (median 0.10 versus 0.24). There were no significant differences in oral rinse samples. Differences in urinary microbiomes were largely explained by menopausal status, with peri/postmenopausal women showing decreased levels of Lactobacillus. Independent of menopausal status, however, cancer patients had increased levels of gram-positive organisms including Corynebacterium, Staphylococcus, Actinomyces, and Propionibacteriaceae.

Charis Eng, MD, PhD, the co-senior author of the study, said, “To my knowledge, this is the first study to examine both breast tissue and distant sites of the body for bacterial differences in breast cancer. Our hope is to find a biomarker that would help us diagnose breast cancer quickly and easily. In our wildest dreams, we hope we can use microbiomics right before breast cancer forms and then prevent cancer with probiotics or antibiotics.” The study was published on October 5, 2017, in the journal Oncotarget.

Related Links:
Cleveland Clinic


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Blood Ammonia Test Analyzer
DRI-CHEM NX10N
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.