We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Inherited Gene Mutation Leads to Ovarian Cancer

By LabMedica International staff writers
Posted on 03 Feb 2016
Women who carry an inherited fault in a certain gene are more than three times more likely to develop epithelial ovarian cancer (EOC) than those without the mutation. More...


Risk prediction based on identifying germline mutations in ovarian cancer susceptibility genes could have a clinically significant impact on reducing disease mortality as around 18 women in every 1,000 develop ovarian cancer, but this risk increases to around 58 women in every 1,000 for women with a mutation in a specific gene.

An international team of scientists led by those at the University of Cambridge Cancer Group (UK) compared the genes of more than 8,000 white European women which included around 3,250 women diagnosed with ovarian cancer, 3,400 women who did not have cancer and 2,000 women who had a family history of the disease. For each gene, they estimated the prevalence and EOC risks and evaluated associations between germline variant status and clinical and epidemiological risk factor information.

Next generation sequencing was used to identify germline mutations in the coding regions of four candidate susceptibility genes: BRCA1 Interacting Protein C-Terminal Helicase 1 (BRIP1), BRCA1 Associated RING Domain 1 (BARD1), Partner and Localizer of BRCA2 (PALB2) and Nibrin (NBN). The scientists found an increased frequency of deleterious mutations in BRIP1 in case patients (0.9%) and in the participants from a clinical screening trial of ovarian cancer (UKFOCSS) (0.6%) compared with control patients (0.09%), but no differences for BARD1, NBN1 or PALB2.

The authors concluded that deleterious germline mutations in BRIP1 are associated with a moderate increase in EOC risk. These data have clinical implications for risk prediction and prevention approaches for ovarian cancer and emphasize the critical need for risk estimates based on very large sample sizes before genes of moderate penetrance have clinical utility in cancer prevention.

Paul D. P. Pharoah, MD, a professor of Cancer Epidemiology and co-director of the study, said, “Our work has found a valuable piece of the puzzle behind ovarian cancer and we hope that our work could eventually form the basis of a genetic test to identify women at greatest risk. Finding these women will help us prevent more cancers and save lives. This would be important in a disease like ovarian cancer, which tends to be diagnosed at a late stage when the chances of survival are worse.” The study was published in the January 2016 edition of the Journal of the National Cancer Institute.

Related Links:

University of Cambridge Cancer Group



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.