Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genomic Aberrations of Asian Gastric Cancer Discovered

By LabMedica International staff writers
Posted on 19 Jul 2015
The fusion of two genes gives rise to the destruction of the stomach surface barrier, resulting in gastric acids affecting the stomach tissues; moreover, this fusion also hampers wound-healing.

Structural changes of chromosomes or genome rearrangements can result in gene fusions with properties that can cause cancer and the three-dimensional organization of the genome, known as the chromatin structure, plays a role for the generation of rearrangements.

Scientists at The Agency for Science, Technology and Research (A*STAR, Singapore) and their colleagues used a technique known as DNA paired-end-tag (DNA-PET) whole genome sequencing, to analyze15 gastric cancers (GCs) from Southeast Asians, and observed that rearrangements were enriched in regions of active genes. More...
They subsequently screened 100 GCs for certain fusion genes that were discovered in the 15 GCs.

Through the sequencing, the scientists identified seven hotspots across the genome which had many rearrangements as well as 136 gene fusions. In three out of the 100 GC cases, they found recurrent fusions between Claudin 18 (CLDN18), a tight junction gene, and Rho GTPase Activating Protein 26 (ARHGAP26), a gene encoding a Ras homolog gene family, member A (RHOA) inhibitor. The functions of both genes are important for a tight inner surface (epithelium) of the stomach. Epithelial cell lines expressing the fused genes CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT). Overall, CLDN18-ARHGAP26 mediates epithelial disintegration possibly leading to leakage of gastric acids, and the fusion might contribute to invasiveness of tumors once a cell is transformed.

Walter Hunziker, PhD, a senior coauthor of the study said, “CLDN18 is a critical component of the gastric epithelial barrier. Fusion of ARHGAP26 to CLDN18 not only interferes with the tethering of CLDN18 to the actin cytoskeleton, but could also affect the actin cytoskeleton by inhibiting RHOA at the wrong location, thereby compromising barrier integrity. The resulting inflammation and gastritis are well known risk factors for gastric cancer.” The study was published on July 2, 2015, in the journal Cell Reports.

Related Links:

The Agency for Science, Technology and Research 



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.