We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Endoscopic Samples Show Precancerous Genomic Changes in Barrett's Esophagus

By LabMedica International staff writers
Posted on 22 Jun 2015
Next-generation sequencing (NGS) has been used to detect genomic mutations in precancerous esophageal tissue, which may improve cancer surveillance and early detection in patients with Barrett's esophagus.

Barrett's esophagus (BE) develops in a subset of patients with gastroesophageal reflux disease (GERD) and can increase the risk of developing cancer of the esophagus and although periodic surveillance for cancer is recommended for BE patients; these examinations may fail to identify precancerous dysplasia and early cancers.

Scientists at Columbia University College of Physicians and Surgeons (New York, NY, USA) and their colleagues selected two groups of patients: 13 "non-progressors" who were patients with BE who never manifested dysplasia or esophageal adenocarcinoma (EAC) during at least two years of monitoring, and 15 "progressors" who were patients who developed high-grade dysplasia (HGD) or EAC, and control samples showing no evidence of Barrett's intestinal metaplasia. More...
The investigators analyzed formalin-fixed, paraffin-embedded (FFPE) tissue samples tissue taken from esophageal biopsies or endoscopic mucosal resections.

DNA was extracted and quantitated by fluorometry with the Invitrogen Qubit fluorometer and the Invitrogen Quant-iT double-strand DNA BR Assay Kit (Life Technologies; Grand Island, NY, USA). Samples from some patients were sequenced in either Life Technologies Ion Torrent and/or MiSeq (Illumina, San Diego, CA, USA) platforms, or in parallel.

The team found that found that progressors had mutations in 75% (6/8) of cases compared to 0% in non-progressors. The tumor suppressor protein p53 (TP53) was the most commonly mutated gene in the BE progressor group. Mutations were also found in the adenomatous polyposis coli (APC) and cyclin-dependent kinase inhibitor 2A (CDKN2A) tumor suppressor genes. Next-generation sequencing from routine FFPE non-neoplastic Barrett’s esophagus samples can detect multiple mutations in minute areas of Barrett’s intestinal metaplasia (BIM) with high analytical sensitivity.

The authors concluded that that DNA from routine endoscopic FFPE samples of non-dysplastic BIM can be efficiently used to simultaneously detect multiple mutations by NGS with high analytical sensitivity, enabling the application of genomic testing of BE patients for improved HGD and EAC surveillance in clinical practice. Antonia R. Sepulveda, MD, PhD, Professor of Pathology and Cell Biology, and senior author of the study said, “The ability to detect mutations in non-neoplastic mucosa, quantitatively and with high detection sensitivity, makes it possible to use NGS mutational testing in the early detection and surveillance of patients who develop BE.” The study was published in the July 2015 issue of the Journal of Molecular Diagnostics.

Related Links:

Columbia University College of Physicians and Surgeons
Life Technologies
Illumina 



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Nasopharyngeal Applicator
CalgiSwab 5.5" Sterile Mini-tip Calcium Alginate Nasopharyngeal Swab w/Aluminum HDLE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.