We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Roche Diagnostics

Develops, manufactures, and markets a wide range of in vitro diagnostic systems, instruments, reagents, and tests read more Featured Products: More products

Download Mobile App




Ovarian Cancer-Specific Markers Leads to Early Diagnosis

By LabMedica International staff writers
Posted on 08 Jun 2015
While DNA carries all the instructions necessary for life, its actual sequence contains much more than just the genes that code for proteins, while in contrast messenger ribonucleic acids (mRNAs) are complementary copies of just the genes.

Ovarian cancer is notoriously difficult to diagnose and treat, making it an especially fatal disease but a custom bioinformatics algorithm has identified human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets.

Scientists at the University of California, San Diego (La Jolla, CA, USA) developed custom bioinformatics algorithms to analyze transcriptome sequence data of 296 ovarian cancer and 1,839 normal tissues and validated putative tumor-specific mRNA isoforms using two large public databases of genetic information.

The teams identified six mRNA isoform molecules that have the tumor specificity required for an early detection diagnostic of ovarian cancer. More...
They also validated their digital results in the real world using real time- quantitative polymerase chain reaction (RT-qPCR), a gene amplifying technique, to detect the same ovarian cancer-specific mRNA molecules in laboratory grown cells using the LightCycler 480 instrument (Roche Diagnostics Corporation; Indianapolis, IN, USA).

Beyond their diagnostic potential, some of the mRNA isoforms identified in the study could also act as new therapeutic targets. These mRNA isoforms are predicted to encode proteins with unique amino acid sequences, which might allow them to be specifically targeted with certain therapeutics, such as monoclonal antibodies or T-cell-based vaccines. The ovarian cancer-specific mRNA isoforms themselves could also be targeted with new therapeutic drugs.

The authors concluded that their results revealed multiple candidate diagnostic and therapeutic targets with unique sequences that were expressed in most of the cancers examined but not in normal tissues. The process they developed can be readily applied to identify diagnostic and therapeutic targets for any of the 30 or more tumor types for which large amounts of transcriptome data now exist.

Cheryl Saenz, MD, a clinical professor of reproductive medicine and study coauthor, said, “Our findings were made in a laboratory and were performed on ovarian cancer cells from cell lines. Clinical trials will need to be conducted on women to confirm the presence of these markers in women that we know have cancer, as well as to document the absence of the markers in women that do not have ovarian cancer.” The study was published on May 26, 2015, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

University of California, San Diego
Roche Diagnostics Corporation 



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Melanoma Panel
UltraSEEK Melanoma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.