Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

QIAGEN

Qiagen is a provider of sample and assay technologies for molecular diagnostics and applied testing, including comple... read more Featured Products: More products

Download Mobile App




Gene Mutation Found for Aggressive Form of Pancreatic Cancer

By LabMedica International staff writers
Posted on 04 Jun 2014
A mutated gene common to adenosquamous carcinoma tumors has been discovered and is the first known unique molecular signature for this rare, but particularly virulent, form of pancreatic cancer.

Pancreatic adenosquamous carcinoma (ASC) is an enigmatic and aggressive tumor that has a worse prognosis and higher metastatic potential than its adenocarcinoma counterpart. More...
There has been little progress in understanding pancreatic ASC, as no mutations unique to this class of pancreatic tumors have been identified.

Scientists at the University of California, San Diego School of Medicine (La Jolla, CA, USA) and an international team evaluated a set of tumors and corresponding normal tissues from 23 patients with ASC of the pancreas, as well as tumors from 24 patients with ductal adenocarcinoma, three patients with solid pseudopapillary neoplasm, two patients with neuroendocrine carcinoma and 21 patients with lung squamous cell carcinoma. Of the 23 ASC patient specimens, there were 19 formalin-fixed, paraffin-embedded (FFPE) tissue sections available. The other four ASC patient specimens were frozen immediately after collection.

Genomic DNA from the frozen samples was extracted using the DNeasy Blood & Tissue Kit (Qiagen; Valencia, CA, USA) and genomic DNA from the FFPE samples was extracted using Qiagen’s QIAamp DNA FFPE Tissue Kit. Quantitative real-time reverse-transcription PCR (RT-qPCR) analysis was performed using the relative quantification method in a RotorGene RG-3000 thermal cycler system (Corbett Research; Mortlake, NSW, Australia).

The investigators found that that ASC pancreatic tumors have somatic or non-heritable mutations in the Up-frameshift 1 (UPF1) gene, which is involved in a highly conserved RNA degradation pathway called nonsense-mediated RNA decay or NMD. It is the first known example of genetic alterations in an NMD gene in human tumors. NMD has two major roles. First, it is a quality control mechanism used by cells to eliminate faulty messenger RNA (mRNA). Second, it degrades a specific group of normal mRNAs, including those encoding proteins promoting cell growth, cell migration and cell survival.

Miles F. Wilkinson, PhD, co-senior author, said, “There has been little progress in understanding pancreatic ASC since these aggressive tumors were first described more than a century ago. One problem has been identifying mutations unique to this class of tumors.” The study was published on May 25, 2014, in the journal Nature Medicine.

Related Links:

University of California, San Diego School of Medicine
Qiagen
Corbett Research 



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.