Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Targeted Fluorescent-Imaging Compound Detects Viable Cancer Cells

By LabMedica International staff writers
Posted on 19 Jan 2009
A fluorescent-imaging compound is turned on only when it is inside a living cell and stops fluorescing when the cell dies or becomes damaged. More...
The compound can be engineered to target specific types of cancer cells.

The new compound enabled scientists to visualize viable breast cancer cells that have spread to the lungs in mice. The compound binds to a protein called HER2, which is found on the surface of some breast cancer cells, and it glows, or fluoresces, only when taken into living cells. This method of targeting and activation allowed the scientists to detect specific types of live cancer cells in a mouse model of breast cancer.

Previously developed fluorescent compounds that are activated inside the body's cells have the limitation that once turned on they continue to fluoresce even after they diffuse to new locations. This makes it very difficult to distinguish viable tumor cells from normal tissue, dead, or damaged tumor cells.

The investigation took place at the National Cancer Institute (NCI), part of the US National Institutes of Health (Bethesda, MD, USA) and in Japan. The scientific team that created the imaging compound was led by Hisataka Kobayashi, M.D., Ph.D., from NCI's Center for Cancer Research (CCR), in collaboration with Yasuteru Urano, Ph.D., from the University of Tokyo (Japan).

"These [fluorescing-imaging] compounds may allow clinicians to monitor a patient's response to cancer therapy by allowing them to visualize whether a drug hits its target and whether hitting the target leads to shrinkage of the tumor," said Dr. Kobayashi. He added, "Our design concept is very versatile and can be used to detect many types of cancer. Unlike other activatable fluorescent compounds, our compound consists of a targeting agent and a fluorescing agent that act independently. We can target the fluorescing agent to different types of cancer cells by using any antibody or molecule that is internalized by the targeted cells after it binds to the cell's surface proteins."

The new compound was described online in Nature Medicine on December 7, 2008.

Related Links:

US National Institutes of Health
University of Tokyo



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Blood Glucose Reference Analyzer
Nova Primary
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.