We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Rapid Pathogen Detection Tool to Return Results Directly from Whole Blood in Six Hours

By LabMedica International staff writers
Posted on 28 Nov 2023

Sepsis, a severe blood infection, is the primary cause of fatalities in hospitals across the United States. More...

This condition, which arises from a pre-existing infection, triggers a systemic response in the body. Sepsis impacts around 1.7 million adults in the U.S. annually, leading to roughly 350,000 deaths. The Centers for Disease Control and Prevention (CDC) has found that about one-third of hospital deaths involve patients who had sepsis at some point during their stay. Additionally, sepsis is the most expensive condition treated in U.S. hospitals, with annual costs ranging from USD 24 to USD 38 billion. The increasing antibiotic resistance due to overuse or misuse of antibiotics makes treating infections more challenging, potentially leading to higher mortality rates. It is estimated that up to 50% of sepsis patients may die if the infection, especially caused by a resistant pathogen, is not treated with the appropriate antibiotics initially. In response, a new initiative is underway to reduce sepsis-related deaths by equipping physicians with vital information to select the most effective antibiotics for specific bloodstream infections.

Siemens Healthineers (Erlangen, Germany) has contracted with the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health (NIH, Bethesda, MD, USA) to improve antibiotic treatment for sepsis patients. The partnership is centered on developing an innovative diagnostic tool. This tool, leveraging next-generation sequencing, aims to quickly detect and identify various bacteria and fungi from a blood sample within six hours, while also indicating their probable antibiotic resistance. This three-year project, backed by a USD 5.5 million contract, aims to deliver a prototype that meets an urgent clinical requirement – providing timely, precise antibiotic treatments for patients at risk of death due to sepsis.

"To make a difference for patients, we need to push the boundaries of what we thought was possible through collaborative innovation," said Rangarajan Sampath, PhD, head of the Center for Innovation for Diagnostics at Siemens Healthineers. "The bacteria causing sepsis have become ever more effective in evading generic treatment options and a more targeted, precision antimicrobial approach is critical. It's within our capabilities as diagnostic test manufacturers to bridge this gap and support physicians by providing information they need as quickly as possible to treat their patients more precisely for better outcomes."

Related Links:
Siemens Healthineers 
NIH 


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Turbidimetric Control
D-Dimer Turbidimetric Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.