We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Integrated Solution for Rapid AST Directly From Positive Blood Cultures to Combat Bloodstream Infection

By LabMedica International staff writers
Posted on 29 Sep 2023

The presence of living bacteria in the bloodstream, known as bacteremia, can lead to serious conditions like bloodstream infections (BSIs) and sepsis, which can often be fatal. More...

Quickly prescribing the right antibiotics is crucial for reducing the risk of death in patients with BSIs. Traditional methods for antimicrobial susceptibility testing (AST) to guide these prescriptions can take a long time, leaving doctors to depend mostly on their own expertise. To tackle this issue, researchers have come up with a specialized microfluidic chip called the BSI-AST chip. This chip can extract bacteria and perform AST directly from positive blood cultures in under 3.5 hours, offering a faster and more effective approach to managing BSIs.

Existing AST techniques take a minimum of two days to provide results after a blood culture tests positive for bacteria. This delay pushes healthcare providers to prescribe broad-spectrum antibiotics without waiting for test results, which could worsen the patient's condition and contribute to antibiotic resistance. In response to this urgent need, a group of researchers, including scientists from the Chinese Academy of Sciences (CAS, Beijing, China), have developed the BSI-AST chip. This chip is capable of isolating bacteria from a positive blood culture in just 10 minutes, and completing the AST in an additional three hours. In a proof-of-concept experiment, the chip successfully performed AST on artificial positive blood cultures containing E. coli, and was tested against 18 different antibiotics, all within less than 3.5 hours.

The BSI-AST chip was also tested with actual clinical positive blood cultures and showed a 93.3% agreement with conventional clinical testing methods. This chip's quick and reliable results demonstrate its immense potential for use in clinical settings. What sets this chip apart is that it can operate directly on positive blood cultures without needing an additional subculture step. This is achieved through the introduction of a separating gel into the microfluidic chip for the first time. Centrifugal microfluidic enrichment technology also played a key role. Additionally, the chip can perform multiple analyses simultaneously through antibiotic drying and parallel array techniques, helping doctors make better antibiotic choices for their BSI patients. The chip can also be easily integrated with Clinical Antimicrobial Susceptibility Test Ramanometry (CAST-R), another invention from the same team, to provide a streamlined solution for sample pretreatment.

"Rapid AST in blood culture is significant for patients with clinical sepsis and has the potential to save lives," said Prof. Cheng Yongqiang, the study's corresponding author, who also noted the role of such technology in combating the serious threat of microbial resistance to humanity.

Related Links:
CAS 


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Rapid Flu Test
Influenza A&B Rapid Test Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.