We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




MALDI-TOF-MS Evaluated for Rapid Diagnosis of Bacteremia and Fungemia

By LabMedica International staff writers
Posted on 13 Jan 2021
When sepsis occurs, it is essential to begin an effective and potent antibacterial or antifungal treatment as soon as possible as early administration and achievement of microbicidal concentrations are associated with better survival in community-acquired and hospital-acquired septicemia.

Rapid species identification is now possible by several techniques directly from positive blood cultures. More...
It allows a first quick adaptation of empirical treatment if inappropriate, according to the species identified. However, available techniques are either expensive such as multiplex polymerase chain reaction (PCR) or fluorescence in situ hybridization using peptide nucleic acid probes (PNA-FISH), that are delayed by a first 4 to 8 hours subculture on agar medium or are time-consuming.

Medical Microbiologists at the Université Grenoble Alpes (Grenoble, France) analyzed 379 positive blood cultures bottles and all the blood cultures were incubated in a BD BACTEC FX instrument (Becton Dickinson, Franklin Lakes, NJ, USA). Among those, 299 samples were selected as they corresponded to the first positive blood culture bottle for all new episodes of bacteremia during random days. Fifty-one positive blood cultures bottles were also included in the study in order to compare identification rates obtained on aerobic or anaerobic bottles for facultative anaerobes (27 second positive bottle of a pair of blood culture already included and 12 additional pairs of positive blood culture).

Matrix Assisted Laser Desorption Ionization—Time of Flight Mass Spectrometry (MALDI-TOF-MS) identification was performed using either the Rapid protocol (10 minutes turnaround time) of the Sepsityper kit (Bruker Daltonics, Bremen, Germany) or the Standard procedure (30 minutes turnaround time). MALDI‑TOF-MS data analysis and evaluation of performance were all acquired on a Bruker Daltonics’ Microflex LT MALDI-TOF mass spectrometer. To provide an optimized diagnosis strategy the team also evaluated the benefit of using an on-plate formic acid extraction step and compared identification rates depending on the type of positive blood culture bottles (aerobic or anaerobic) for facultative anaerobes.

The investigators reported that identification rates were determined prospectively on 350 bacterial and 29 fungal positive blood cultures, and compared to conventional diagnostic method. Their rapid diagnosis strategy (Rapid Sepsityper protocol: one spot with and one without formic acid extraction step) combined to MBT-Sepsityper module provided 65.4%, 78.9% and 62% reliable identification to the species level of monomicrobial positive blood cultures growing respectively Gram-positive, Gram-negative bacteria or yeast.

Importantly, identification rates of Gram-positive bacteria were higher in anaerobic than in aerobic bottles (77.8% versus 22.2%), if formic acid extraction step was performed (60.8% versus 39.2%) and if specific MBT-Sepsityper module was used (76.2% versus 61.9%), while no significant differences were observed for Gram-negative bacteria. For yeasts identification, formic acid extraction step improved rapid identification rate by 37.9% while the specific MBT-Sepsityper module increased overall performances by 38%, providing up to 89.7% reliable identification if associated with the standard Sepsityper protocol.

The authors concluded that the rapid Sepsityper protocol is an interesting commercial assay for quick bacterial identification in bloodstream infections (BSI) that could allow early adaptation of empirical antibiotic treatment according to the species identified. The study was published on December 9, 2020 in the journal Annals of Clinical Microbiology and Antimicrobials.

Related Links:
Université Grenoble Alpes
Becton Dickinson
Bruker Daltonics




Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.