Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




A Rapid Method for Selecting the Proper Antibiotic to Treat Multidrug Resistant Bacteria

By LabMedica International staff writers
Posted on 12 Dec 2019
A new diagnostic approach allows physicians to accurately identify bacterial pathogens and identify the most appropriate antibiotic within a period of hours rather than days. More...


Multidrug resistant organisms are a serious threat to human health. Fast, accurate antibiotic susceptibility testing (AST) is a critical need in addressing escalating antibiotic resistance, since delays in identifying multidrug resistant organisms increase mortality and use of broad-spectrum antibiotics, further selecting for resistant organisms.

The current gold standard method for "phenotypic" antibiotic susceptibility testing (AST) is growing organisms isolated from the patient in the presence of various antibiotics to see which drug can inhibit growth of the microbe. While such growth-based assays are accurate, they require several days to return results. Newer "genotypic" methods that search bacterial DNA for mutations known to confer drug resistance are quicker but less accurate, since resistance can arise from genetic changes other than those included in the test.

A new approach that combines both phenotypic and genotypic analysis has been developed by investigators at the Broad Institute of the Massachusetts Institute of Technology and Harvard University (Cambridge, MA, USA). This rapid assay combines genotypic and phenotypic AST through RNA detection. The test, which has been named GoPhAST-R (for Genotypic and Phenotypic AST through RNA), classifies bacterial strains with 94–99% accuracy by coupling machine learning analysis of early antibiotic-induced transcriptional changes with simultaneous detection of key genetic resistance determinants.

The method employs machine-learning algorithms to identify the mRNA transcripts that best distinguish drug-sensitive from drug-resistant organisms and integrates this information with analysis of the sequence of mRNA transcripts to reveal whether the bacteria carry key genes known to cause drug resistance.

By performing these analyses on the NanoString (Seattle, WA, USA) prototype Hyb & Seq instrument, the investigators were able to use the GoPhAST-R method to determine antibiotic susceptibility less than four hours after bacteria were positively detected in a blood culture, compared to 28-40 hours using standard clinical laboratory methods. The method was able to detect susceptibility to three major antibiotic classes in clinical use today - carbapenems, fluoroquinolones, and aminoglycosides in five pathogens that often become drug-resistant: Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa.

"The ability to quickly and accurately identify the best antibiotic would greatly improve the care of patients with infection, while ensuring that our arsenal of antibiotics is deployed intelligently and efficiently," said senior author Dr. Deborah Hung, associate professor of molecular biology at Harvard Medical School.

The GoPhAST-R method was described in the November 25, 2019, online edition of the journal Nature Medicine.

Related Links:
Broad Institute
NanoString



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.