We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




A Rapid Method for Selecting the Proper Antibiotic to Treat Multidrug Resistant Bacteria

By LabMedica International staff writers
Posted on 12 Dec 2019
A new diagnostic approach allows physicians to accurately identify bacterial pathogens and identify the most appropriate antibiotic within a period of hours rather than days. More...


Multidrug resistant organisms are a serious threat to human health. Fast, accurate antibiotic susceptibility testing (AST) is a critical need in addressing escalating antibiotic resistance, since delays in identifying multidrug resistant organisms increase mortality and use of broad-spectrum antibiotics, further selecting for resistant organisms.

The current gold standard method for "phenotypic" antibiotic susceptibility testing (AST) is growing organisms isolated from the patient in the presence of various antibiotics to see which drug can inhibit growth of the microbe. While such growth-based assays are accurate, they require several days to return results. Newer "genotypic" methods that search bacterial DNA for mutations known to confer drug resistance are quicker but less accurate, since resistance can arise from genetic changes other than those included in the test.

A new approach that combines both phenotypic and genotypic analysis has been developed by investigators at the Broad Institute of the Massachusetts Institute of Technology and Harvard University (Cambridge, MA, USA). This rapid assay combines genotypic and phenotypic AST through RNA detection. The test, which has been named GoPhAST-R (for Genotypic and Phenotypic AST through RNA), classifies bacterial strains with 94–99% accuracy by coupling machine learning analysis of early antibiotic-induced transcriptional changes with simultaneous detection of key genetic resistance determinants.

The method employs machine-learning algorithms to identify the mRNA transcripts that best distinguish drug-sensitive from drug-resistant organisms and integrates this information with analysis of the sequence of mRNA transcripts to reveal whether the bacteria carry key genes known to cause drug resistance.

By performing these analyses on the NanoString (Seattle, WA, USA) prototype Hyb & Seq instrument, the investigators were able to use the GoPhAST-R method to determine antibiotic susceptibility less than four hours after bacteria were positively detected in a blood culture, compared to 28-40 hours using standard clinical laboratory methods. The method was able to detect susceptibility to three major antibiotic classes in clinical use today - carbapenems, fluoroquinolones, and aminoglycosides in five pathogens that often become drug-resistant: Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa.

"The ability to quickly and accurately identify the best antibiotic would greatly improve the care of patients with infection, while ensuring that our arsenal of antibiotics is deployed intelligently and efficiently," said senior author Dr. Deborah Hung, associate professor of molecular biology at Harvard Medical School.

The GoPhAST-R method was described in the November 25, 2019, online edition of the journal Nature Medicine.

Related Links:
Broad Institute
NanoString



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.