We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




LC-MS/MS Assay Directly Detects Urinary Bacteria

By LabMedica International staff writers
Posted on 30 Oct 2019
Fast identification of microbial species in clinical samples is essential to provide an appropriate anti-biotherapy to the patient and reduce the prescription of broad-spectrum antimicrobials leading to anti-bioresistances.

Matrix-assisted laser desorption/ionization – time of flight-mass spectrometry (MALDI-TOF-MS) technology has become a tool of choice for microbial identification, but has several drawbacks as it requires a long step of bacterial culture prior to analysis (24 hours), has a low specificity and is not quantitative.

Scientists at the Centre Hospitalier Universitaire de Québec (Québec, QC, Canada) and their colleagues developed a new strategy for identifying bacterial species in urine using specific liquid chromatography–mass spectrometry (LC-MS/MS) peptidic signatures. More...
The team combined several mass spectrometry techniques to develop their assay, starting with shotgun mass spectrometry assays of pure bacterial colonies to develop mass spectral libraries for use in subsequent data-independent acquisition (DIA) assays. They used those DIA assays to detect bacterial peptides in urine samples, quantifying 31,000 peptides from 190 samples containing 15 bacterial species that cause 84% of all urinary tract infections (UTIs).

The sceintists tested these targeted assays in urine samples inoculated with the four most commonly found causes of UTIs (Escherichia coli, Streptococcus agalactiae, Enterococcus faecalis, and Klebsiella pneumonia) at five different concentrations running the experiments with 90-minute LC gradients on a Thermo Fisher Scientific Orbitrap Fusion. They also ran the samples on a Thermo Fisher Q Exactive HF-X using a 30-minute LC gradient. The assays showed 100% accuracy in all inoculations at concentrations above the standard clinical threshold and 97% accuracy overall.

The scientists also compared their direct detection approach to a standard MALDI-TOF workflow, finding that in a set of 27 patients, the two methods agreed on 19 of the samples (seven of which were not infected and nine of which were infected with E. coli), while disagreeing on eight samples, seven of which the MALDI-TOF method identified as infected while the LC-MS/MS approach identified as not infected, though these seven were identified by the MALDI-TOF at the genus, but not species level.

The authors concluded that their work demonstrates the efficiency of the method for the rapid and specific identification of the bacterial species causing UTI and could be extended in the future to other biological specimens and to bacteria having specific virulence or resistance factors. The study was published on October 4, 2019, in the journal Molecular & Cellular Proteomics.

Related Links:
Centre Hospitalier Universitaire de Québec


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.