We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Certain Antibiotic Combinations Could Target Heteroresistance

By LabMedica International staff writers
Posted on 03 Jul 2019
Antibiotic-resistant bacteria are a significant threat to human health, with one estimate suggesting they will cause 10 million worldwide deaths per year by 2050, surpassing deaths due to cancer. More...
Heteroresistance means that standard tests used in hospital laboratories would not always detect resistance to a given antibiotic, because only a small sub-population of the bacterial cells are resistant to the drug.

Antibiotic combination therapy offers promise for treating highly resistant bacterial infections, but the factors governing the sporadic efficacy of such regimens have remained unclear. Because new antibiotic development can take a decade or longer, it is imperative to effectively use currently available drugs. Dogma suggests that antibiotics ineffective as monotherapy can be effective in combination.

Microbiologists at the Emory Health Sciences (Atlanta, GA, USA) and their colleagues examined 104 bacterial isolates from a CDC-supported surveillance program in Georgia (Multi-site Gram-negative Surveillance Initiative), tracking multi-drug resistant "superbugs" (Carbapenem-resistant Enterobacteriaceae or CRE). They chose two isolates of pan-resistant Klebsiella pneumoniae bacteria, Nevada-2016 and AR0040. The first came from a woman who had died in a Nevada hospital in 2016. This "superbug" stimulated alarm from public health officials, because standard laboratory tests showed it was resistant to 26 different antibiotics, including a last resort drug called colistin.

The team found that within an isolate, the subpopulations resistant to different antibiotics were distinct, and over 88% of CRE isolates exhibited heteroresistance to multiple antibiotics (‘multiple heteroresistance’). Combinations targeting multiple heteroresistance were efficacious, whereas those targeting homogenous resistance were ineffective. Two pan-resistant Klebsiella isolates were eradicated by combinations targeting multiple heteroresistance, highlighting a rational strategy to identify effective combinations that employ existing antibiotics and could be clinically implemented immediately.

David S. Weiss, PhD, and associate professor of medicine (infectious diseases) and senior author of the study, said, “We can think of heteroresistance as bacteria that are 'half resistant'. When you take the antibiotic away, the resistant cells go back to being just a small part of the group. That's why they're hard to see in the tests that hospitals usually use. We're saying: don't toss those drugs in the trash; they may still have some utility. They just have to be used in combination with others to do so.” The study was published on June 17, 2019, in the journal Nature Microbiology.

Related Links:
Emory Health Sciences


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.