We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Sequencing Shows Promise for Diagnosing Prosthetic Joint Infections

By LabMedica International staff writers
Posted on 07 May 2019
A method is being developed for diagnosing infections associated with prosthetic joint implants that promises to provide results in a matter of hours as opposed to a week or more. More...
The current gold standard is bacterial culture from periprosthetic tissue samples collected during surgery, although another option is culturing from sonicated explanted prostheses in saline.

Of approximately 113,000 total knee replacement surgeries performed in the UK in 2017, 6,500, or about 6%, were revision surgeries, and nearly a quarter of those surgeries took place because of an infection or suspicion of infection. Elbow replacement surgeries showed similar rates of infection-related revision surgeries, while shoulder and hip replacements were around 17%and 16% respectively.

A team of scientists associated with the University of Oxford (Oxford, UK) devised a workflow involved removing a prosthetic device during surgery then placing it in saline and sonicating it to obtain approximately 40 mL of sonication fluid, which is essentially the largest volume they can easily handle in the laboratory, which is allowed them to maximize the number of cells they can extract DNA from. The sonication step potentially increases the number of bacterial cells available in the sample because it disrupts the bacterial biofilm. The DNA is extracted from the sonicated samples, cleaned, and prepared into libraries, which are then sequenced. The work leveraged Oxford Nanopore sequencing technologies.

Teresa Street, PhD, a postdoctoral research student at Nuffield Department of Clinical Medicine (Oxford, UK) and a co-author of the study said, discussed her group's attempts to validate the technology as part of a completely culture-free method for diagnosing prosthetic joint implant infections. She said “That the current gold standard is bacterial culture from periprosthetic tissue samples collected during surgery, although another option is culturing from sonicated explanted prostheses in saline. However, culture from tissue samples is relatively insensitive, with detection rates around 65% and is a very busy process with many steps.”

Their analyses using this improved protocol have a high degree of concordance with culture testing, and in fact they have been able to detect positives for certain species that were culture-negative. In addition, in a few Staphylococcus-positive cases so far they have been able to identify antimicrobial resistance genes. In one sample, they were able to detect two different Staphylococcus organisms, one of which they could identify (S. haemolyticus) and one of which they could not.

They later used MALDI-ToF mass spectrometry to identify this organism as S. caprae, and realized they couldn't initially detect it because it was not in their reference database, underscoring the fact that metagenomic sequencing is only as good as the reference database being used. The study was presented at the European Congress of Clinical Microbiology and Infectious Diseases held April 13-16, 2019, in Amsterdam, The Netherlands.

Related Links:
University of Oxford
Nuffield Department of Clinical Medicine


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.