We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




LAMP Test Rapidly Detects Sexually Transmitted Chlamydia

By LabMedica International staff writers
Posted on 10 Jan 2019
Chlamydia trachomatis is the leading cause of sexually transmitted diseases (STDs) in females and males in both developed and developing countries, with more than 110 million cases annually. More...
C. trachomatis resists antibiotic treatment and is a cofactor in HIV transmission and human cervical cancer.

For nucleic acid amplification tests, recently loop-mediated isothermal amplification (LAMP) has presented an attractive alternative to standard methods like polymerase chain reaction (PCR) due to its low price, ease of use, rapid results, and lack of requirement for an expensive thermal cycler and specialized kits for DNA extraction and purification.

Scientists at the Chulalongkorn University (Bangkok, Thailand) and their associates have developed a rapid, inexpensive, easy-to-interpret, sensitive and specific point-of-care (POC) C. trachomatis detection system, using a LAMP assay for target C. trachomatis DNA amplification, followed by gold nanoparticle probe (AuNP) for colorimetric C. trachomatis specific readout.

The team collected endocervical swab samples were randomly selected from a prospective study cohort of sexually transmitted disease (STD) prevalence in symptomatic and healthy (which may include non-symptomatic patients) Thai women aged 15 to 54 years in Bangkok and nearby areas. The samples were collected by clinicians during 2011 and 2012 from qualified volunteers. The sample size of 130 (96 symptomatic and 34 healthy) was computed based on a standard statistical formula.

A set of six primers was designed for LAMP to target eight distinct regions on the C. trachomatis ompA gene. To determine the optimal LAMP assay condition (incubation temperature and incubation time), the LAMP reaction was incubated at 59 °C to 65 °C for 30 to 60 minutes (without loop primers) and 10 to 35 minutes (with loop primers). A 25 μL LAMP reaction comprised DNA template, High Pure PCR Template Preparation Kit. Nanogold particles of 10 nm were appended to the probe to create the complementary AuNP-DNA probe specific for the C. trachomatis LAMP product.

Of the 130 clinical samples, the LAMP-AuNP sensitivity was 96% (23/24) and specificity 99% (105/106). This result is higher than the LAMP-GE. The percentages of assay accuracy for PCR-GE and LAMP-AuNP were equal (98%), whereas for LAMP-GE it was 96%. The AuNPs allow simple visualization of results and improve the LAMP specificity and sensitivity. The percentages of assay accuracy for the independent replicate detection were 100% for PCR-GE, 99% for LAMP-AuNP, and 98% for LAMP-GE. Verification from the UV-vis spectra supported the convenient colorimetric reading of the LAMP-AuNP assay.

The authors concluded that the C. trachomatis LAMP-AuNP detection is appropriate for local and resource-constrained settings. The assay directly uses clinical samples, obtains results in 32 to 47 minutes and the result is readable by the naked eye. The study was published on December 20, 2018, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:
Chulalongkorn University


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Turbidimetric Control
D-Dimer Turbidimetric Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.